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ABSTRACT
Around 10% of the world’s population suffers from liver disease, making it one of the deadliest 
diseases in the world. Flavonoids are a class of phenolic substituents present in a wide range of 
vegetables and fruit and have been identified to control the Nrf2 pathway. Therefore, flavonoids 
are attracting significance as a therapeutic strategy for liver disease. The main objective of this 
review discuss the role of flavonoids modulate Nrf2 for the prevention and treatment of liver 
disease. It has been investigated in relation to several liver illnesses like alcoholic liver disease, 
cirrhosis, and fibrosis. Flavonoid is among the most widely investigated herbal supplements 
for preventing and diagnosing liver illness. By triggering the normal ARE target affinity site, 
Nrf2 encourages the production of metabolic enzymes. It can also enhance the antioxidant 
and inflammation response and play a significant role in the illness. Oxidative stress play an 
important role in the pathophysiological changes of liver diseases. Nrf2 is known to participate 
in hepatic fatty acid metabolism, as a negative regulator of genes that promote liver disease. 
Nrf2 increases the gene regulation of Heme oxygenase-1 and NQO-1 which initiates an 
anti-inflammatory response, improves mitochondrial function, and reduces oxidative stress. Nrf2 
activated LXR-α activity and LXR-α dependent hepatic steatosis and helps in the regulation of 
VLDLR in liver disease. This review may stimulate the scientific world to examine flavonoids to 
develop innovative and effective medications with hepatoprotective effects via altering the Nrf2 
signaling pathway.
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INTRODUCTION

The liver is the biggest organ in the body, which is around 2% 
of the adult body mass.1 The liver maintains metabolic processes 
and detoxifies the body from internal and external threats such 
as xenobiotics, viral infections, and persistent alcoholism.2 One 
of the most crucial and separate functions of the liver is that it 
also removes toxins from the blood that are produced by alcohol, 
chemicals, heavy metals, and organism.3 Hepatic disease is one of 
the major worldwide health conditions due to wide incidence and 
poor long-term clinical exposure including early mortality from 
hepatic disintegration and cirrhosis of the liver and hepatocellular 
carcinoma.4 Hepatic diseases such as viral hepatitis, ALD and 

NAFLD with cirrhosis are a significant source of sickness and 
morbidity worldwide.5

Oxidative state and inflammation are the primary pathogenic 
cause of hepatic disease. Oxidative stress is a condition which 
involves an imbalance between reactive oxygen species 
generation and clearance in cells when the cellular antioxidant 
system is unable to detoxify them.6 About oxidative state, cells 
stimulate the antioxidant pathway to produce the Nrf2, the master 
controller of antioxidant enzymes.7 Phytonutrients obtained from 
various biological sources have been significant emphasis on 
drug development, to create unique preventative and therapeutic 
approaches for a variety of diseases such as cirrhosis, fibrosis, 
and hepatocellular carcinoma.8,9 Flavonoids (flavus-yellow), 
bioflavonoids, are one of the most significant types of natural 
ingredients in plants having more than 9,000 demonstrated 
structures.10 On the basis of structure arrangement, the flavonoids 
are categorized into flavone, flavanol, flavanone, isoflavone, and 
anthocyanins.11 Flavonoids have a lot of healthcare benefits, 
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but their poor bioavailability has been a matter of concern.12 
Most flavonoids are assumed to be nontoxic in comparison to a 
particular secondary metabolite of plants, but their tolerability 
and pharmaceutical medicament in medical studies are yet not 
well investigated and determined. Nrf2 is a crucial transcription 
factor that is strongly connected to inflammation-induced 
oxidative stress.13 Additional research categories revealed the 
critical regulation of Nrf2 protected the liver from medicine 
and xenobiotics.14 Numerous studies identified an interaction 
between Nrf2 and numerous types of hepatic diseases such as 
cirrhosis, HCC, ALD, NAFLD, non-alcoholic steatohepatitis, viral 
hepatitis, and fibrosis.15 An extensive range of phytochemicals, 
including flavonoids, have proven the ability to activate the 
Nrf2/ARE pathway without the presence of oxidative inducers. 
Flavanoids' desire to protect the liver lead to increased levels of 
antioxidant defense genes and phase 2 detoxification genes.14 This 
review summarises the role of the Nrf2 /Keap1 pathway in hepatic 
conditions and the effect of natural moiety in hepatoprotection 
via the enhancement of the Nrf2 /Keap 1 signaling pathway.

Epidemiology of hepatic disease globally and in 
China

Currently, hepatic disease causes approximately 30,000 to 40,000 
patient death each year in China.16 According to the national 
statistics in the United Kingdom after heart disease, stroke, chest 
disease, and cancer, hepatic disease is now the fifth most widely 
prevalent disease.17 Around 2 million deaths occur globally from 
liver disease, of which 1 million are because of cirrhosis,1 million 
to viral hepatitis, and 1 million to HCC.2,18 The epidemiology of 
hepatic disease globally and in China is summarized in Table 1.19 
The status of liver diseases in India is mentioned in (Figure 1).20

The canonical Nrf2 pathway

During oxidative stress conditions, cells change their metabolism 
and gene regulation to preserve redox homeostasis via stimulating 
NF-E2-related factor 2 (Nrf2) and additional stressors pathways.21 
An oxidative state occurs because of the collection of reactive 
oxygen species, such as O2, H2O2, OH, and the second reactive 
species such as peroxyl and R-O*.22 Reactive oxygen species 
can destroy proteins, lipids, and deoxyribonucleic sequences. 
Nrf2 is referred to as, a master controller which regulates the 
transcriptional activation of genes in anti-oxidation, antioxidant 
pathway, and catabolism pathways.23

Nrf2

Nrf2 was introduced in 1994 as a regulator of beta-globing 
regulation.24 Nrf2, belongs to the Cap “n’ Collar (CNC) 
basic leucine-zipper (b-Zip) proteins25,26 which control cell 
response against oxidant and electrophilic state.27 Nrf2 role as 
a transcriptional influence was introduced in 1996 which helps 
in the regulation of antioxidants and detoxifies the catalyst and 
is an activator of ARE.28,29 Nrf2 is found in the cytosol.30,31 The 
similarity between NF-E2L2 binding sequences and ARE was 
first reported by Itch and colleagues.32 In humans, Nrf2 is made 
up of 605 AA33 and contains seven functional domains called 
Nrf2-ECH homologies (Neh) represented as Neh1-7.34 The Neh 
domains have a different goal represented in (Figure 2A).35

Neh1 has a basic leucine-zipper (bZIP) structure which plays 
a key role in deoxyribonucleic acid attachment, as well as Nrf2 
dimerization with small muscle aponeurosis fibromatous 
proteins which play the most important function in interaction 
with UbCM2 and E2 ubiquitin-conjugating enzyme which 
is reactive for Nrf2 protein strength.33 The N-terminal Neh2 
domain (AA1-86), is related to cysteine-rich peptides, 
KELCH-like ECH-associated protein, which is important for 
the primary ubiquitination E3 ligase adaptor that moderates 
ubiquitination-dependent proteasomal degradation of Nrf2.36 
The Neh2 domain has a high-affinity ETGE and lower-affinity 
DLG motif to which Keap1 is to be bound.37 The Neh3 domain 
is essential for the stimulation of the Nrf2 gene through binding 
with the chromo-ATPase and helicase DNA binding proteins 
known as CHD6.38 Neh4 and Neh5 provide an interaction site 
for nuclear cofactor RAC3/AIB1/SRC-3 and CREB-Binding 
Protein (CBP) and enhance the Nrf2/ARE activation pathway 
by initiating the acetylation of Nrf2.39 GSK-3 can phosphorylate 
the serine-rich residue in the Neh6 domain which results in the 
degradation of Nrf2 by the proteasomal cullin 1 (cul1) dependent 
ubiquitination.40 The most recently described domain is Neh7. 
It contains a region that can help in protein-protein interaction 
between Nrf2 and the DNA binding domain of the retinoid X 
receptor alpha (RXR).41 This inhibits Nrf2 activity by blocking the 
recruitment of coactivators to the Neh4 and Neh5.42

Stimulation of Nrf2

Nrf2 interacts with the protein called Keap1 present in the 
cytosol.43 Keap1 was identified by Masayuki Yamamoto and 

Diseases Globally (%) China (%)
Non-alcoholic fatty liver disease >600 million 200 million (15)
Alcoholic liver diseases >150 million 60 million (4.5)
Hepatitis B infection 2 million
Anti-HCV positive 200 million 10 million (<1.0)
HBsAg positive 350-400 million Million

Table 1: Epidemiology of hepatic disease globally and in China.
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his colleagues in 1999 as a negative regulator of nuclear factor 
erythroid 2-related factor 2 and then immediately they turned 
focused on cysteine residues of Keap1.44 Cysteine is different from 
other amino acids because of its sulfhydryl (thiol) functional 
group which plays a role in performing different type of functions, 
which include creating intra-molecular and inter-molecular 
chemical binding with certain other amino acids, interacting 
with metallic materials and semimetals and passing from either 
improvable or irreparable decomposition when it comes into 
contact with an oxidant.45

Keap1 is a 69.7-KD actin-binding protein having 625 amino 
groups of which, 27 are cysteine residues. Because of cellular 
redox situations, Keap 1 controls the constant rate of Nrf2 and is 
known as the master controller of the Keap1 Nrf2/ARE pathway.46 
Keap 1 is a cofactor, containing three occupational areas: a 
broad-complex, tram Trafck-Bric-a-brac (BTB homodimerization 
area), an Intervening Region (IVR), C-terminal KELCH area with 
Double Glycine Repeat (DGR) area.47 In 2014, the arrangement 
of the Keap 1 Tram track-Bric-a-bracarea was reported. They 
revealed a fold that is identical to the PLZF domain despite also 
having a low sequence identity and different cellular functions.48 
The N-terminal Neh2 area of the Nrf2 interacts with Keap1 
by both DLG and ETGE motifs.49 In the case of the oxidative 
condition, the DLG motif in Nrf2 released from the DGR domain 
is Keap1, then inhibiting Nrf2 ubiquitination and subsequent 
degradation.50 According to the Hinge and latch model, 
KELCH-like ECH-associated protein interacts with the ETGF 
motif which is longer as compared to the DLG.13 The IVR area is 
crucial for Keap1 cytoplasmic localization just because it carries 
the binding sequence for fundamental signaling.51 An intervening 
region has extremely reactive amino groups which help in ROS 
conditions, RNS, and H2S.52 The IVR region comprises the most 
reactive cysteine group of Keap1 (Cys257, Cys272, Cys288, 

Cys297) which are the redox sensors.53 The DGR domains have 
six repeats of the KELCH motif, resulting in the formation of a 
six-bladed -propeller arrangement. Every blade of the -propeller 
arrangement is made up of a four-stranded antiparallel beta-sheet, 
which enables Keap1 for binding with numerous proteins.54 The 
structure of Keap1 is shown in (Figure 2B).55

Transcriptional regulation of Nrf2

Nrf2 regulates the transcriptional mechanism when the Nrf2 
transcription factor is attached to ARE in the activator area of 
various tissue against genes to stimulate their transcription. The 
NFE2L2 gene has an ARE with the activator area for inhibiting 
the Nrf2 capability so that they immediately stimulate their 
transcription and carry out a favorable response for increasing 
the Nrf2 effects.56 In addition, it also suggested that Nrf2 regulates 
various oncogene's signalling pathways such as K-RAS(G12D), 
B-RAF (V619E) and MYC (ERT2), the PI3K-AKT pathway 
which further increases the miRNA level of Nrf2 and its target 
genes.57 In the case of the oxidative stress, results in the formation 
of a binding site for Cullin 3 (CUL3), then introduces Nrf2 into 
the cullin-ring E3 ubiquitin-ligase complex (CRL) multi-subunit 
protein arrangement.58

Nrf2 Regulation by Gene

More than 500 genes were modulated by the Nrf2/ARE pathway.44 
The gene target controlled by ARE involves phase 1 and 2 
detoxified enzymes, transport proteins, proteasome subunits, 
chaperones, growth factors, and receptors with transcriptional 
factors.59 Nrf2 target antioxidant enzymes include HO-1, NQO1,60 
NRH: quinone oxidoreductase 2(NQO)2, Glutamate-cysteine 
ligase catalytic (GCMC), superoxide dismutase1, glutathione 
S-transferase (GSH) and so on, which are responsible for the 
maintenance of oxidant, an antioxidant condition the cells.61,62

Figure 1: Changes in death rates in all cirrhosis as well as in HBV, HCV, and in ALD.
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NADPH-quinone oxidoreductase

NADPH-quinone oxidoreductase is a flavoprotein that competes 
with cytochrome p450 reductase and detoxifies the enzymes which 
are responsible for the prevention of cells from quinone-initiate 
oxidative destruction.63

HO-1

HO-1 is an enzyme and the first step which are responsible for 
the breakdown of pro-oxidant heme into CO, biliverdin, and 
ferrous.64,65 Heme is a protoporphyrin IX ring having a Fe2 atom 
present in the middle which can regulate the Fenton reactor to 
create extremely dangerous hydroxyl radicals which are derived 
from hydrogen peroxide.66,67 HO-1 has both antioxidants, as well 
as anti-inflammatory effects when biliverdin is transferred into 

the anti-oxidant bilirubin via biliverdin reductase and in a small 
quantity of CO, may act as anti-inflammatory properties.42

Superoxide dismutase (SOD)

SOD is an enzyme that is responsible for neutralizing the 
superoxide anion and further, it is considered a biological defense 
against OS. SOD catalyzes superoxide into H2O2 which is catalyzed 
by glutathione peroxidase enzymatic reaction.2 The eukaryotic 
genome contains three distinct SOD genes: SOD-1 encrypts 
cytoplasmic Cu/Zn-SOD, SOD-2 encrypts mitochondrial 
MN-SOD, and SOD-3 which encrypts extracellular Cu/Zn-SOD. 
The human SOD- 1 and SOD-2, SOD-3 genes are found in genetic 
code 21q22, genetic code 6q25.3, and genetic code 4. The SOD-2 
gene differs significantly from the SOD1 and SOD3 in terms of 
genetic organisation.68

Figure 2:   Domain framework of Nrf2, Structure of Keap1.
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Glutathione-S-transferases (GSTs)
GST superfamily contains various isoenzyme that is present 
in different location such as in the cytosolic, membrane, and 
mitochondria. GST is responsible for the oxidative defense 
and detoxification process because they convert GSH to  
electrophiles.20

Post-Translational Regulation of Nrf2 and Keap1
The post-translational modification69 involves acetylation70 and 
phosphorylation as shown in (Figure 3) which are required for 
the Nrf2 stimulation. Nrf2 has threonine, serine, and tyrosine 
residues which enable location for performing phosphorylation 
by a variety of kinases including71 mitogen-activated protein 
kinase72 and PKC at Ser 40, Protein kinase-like ER kinase 
(PERK)73 and Fyn kinase, Phosphatidyl Inositol 3-kinase 
(PI3K). Nrf2 has a Neh2 domain which can be phosphorylated 
by protein kinase C at ser-40, which further facilitates the Nrf2 
translocation by breaking the binding between Nrf2 and Keap 1.74 
Phosphorylated Nrf2 is further removed from the cell and then 
undergoes ubiquitination by -TRCP/cullin 1 E3 ligase complex.75 
Acetylation of Nrf2 is carried out when p300/CBP76 interacts with 
NRF2 in case of oxidative condition which is further produced 
via acetylates, arsenite within the Neh1 DNA binding site of Nrf2. 
This binding site produces no effect on Nrf2 protein stability 
but affects the capability of Nrf2 with the DNA sequences.77 In 
this way, it affects itself downstream of the Nrf2 /KELCH-like 
ECH-associated protein complex while increasing the capacity of 
Nrf 2 for binding with the DNA.78

Connection of Nrf2 with liver disease
The liver is a flexible structure that regulates detoxification3 
as well as lipid metabolism. Additionally, it also regulates the 
hepatic antioxidant defensive mechanism, thus Nrf2 changes the 
energy metabolism pathway in the liver.78 Along with hepatic 
stellate cells, Kupffer cells, and parenchymal hepatocytes, Nrf2 
stimulation is also found in non-parenchymal cells.79 Alcoholic 
and NAFLD and HCC, hepatitis B, and hepatitis C are liver 
illnesses associated with a loss in antioxidant defense.80,81

Role of Nrf2 in Non-alcoholic Steatohepatitis
NAFLD is a continuously developing illness arising from the 
deposition of lipids in the liver and developed all over the world.82 
About one-third of individuals suffering from NAFLD in which 
they develop severe NASH which is related to the inflammatory 
response83 and fibrosis. NAFLD was connected to obesity84 and 
insulin resistance85 which includes NASH.86 Oxidative condition 
is considered the initial cause of hepatocellular injury which 
promotes liver inflammation and fibrosis in NASH individuals.87 
Therefore, hydrogen peroxide affects sequences and fatty acid 
synthesis, causing an inflammatory response, hepatic fibrosis, and 
apoptosis.88 After the deposition of triglyceride in the liver affects 
the mitochondrial respiratory chain process which causes excess 

production of ROS and loss of mitochondrial glutathione.Nrf2 
plays a key role in NASH and its activation which protects against 
NASH disease.89 Therefore, Nrf2 activation affects the activation 
of genes that participate in metabolic order which is crucial for 
maintaining nutritional homeostasis, particularly during the 
initiation and progression of NAFLD.90 A report established that 
Nrf2 activation prevents LXR-α activity and LXR-α dependent 
hepatic steatosis. Liver X receptor-α (LXR) is a member of the 
nuclear receptor family of ligand-dependent transcription 
factors.91 It promotes the synthesis of new fatty acid formation in 
steatohepatitis patients.92 The main immune cells include Kupffer 
cells, dendritic cells, neutrophils, and natural killer cells that help 
to encourage non-alcoholic fatty liver disease/NASH initiation 
via detecting DAMPs secreted from destroyed hepatocytes or 
PAMPs produced from many other tissues including the gut and 
adipose tissue.93

According to the previous study, activation of Nrf2 increases the 
gene regulation of Heme oxygenase-1 and NQO-1 which further 
initiates anti-inflammatory effects. HO-1 is demonstrated in mice 
to suppress the phosphorylation of nuclear factor-κB by its own 
substrate tumor necrosis factor revealing that it has inhibitory 
effects on the beginning of the inflammatory activity.65 Another 
pathway for a potential NAFLD therapy is the activation of Nrf2, 
which help in the regulation of transforming growth factor-β.94

Green tea extract and ezetimibe are identified with 
hepatoprotective action on Nrf2 in contrast to fat accumulation 
and soreness in NASH by p62-dependent modulation of Nrf2. 
The p62 accumulation causes Nrf2 to stabilize and accumulate 
while disrupting the Keap1 and Nrf2 interaction.6 Scutellarin 
(Erigeron breviscapus) is a herbal medication with a constituent 
of breviscapine, which helps in increasing the Nrf2-initiated by 
reducing the hemoglobin fat level and increasing antioxidant 
level by stimulating the PPARƴ and its coactivator-1alpha, 
Heme oxygenase-1, glutathione-S transferase, NQO-1 and thus 
decreasing the nuclear factor-κB and KELCH-like ECH-associated 
protein at the protein level thus improving the non-alcoholic fatty 
liver disease.95 Punicalagin is a vitamin used in the prevention of 
non-alcoholic fatty liver disease because it activates Nrf2, which 
improves mitochondrial function and reduces inflammation and 
oxidative stress.96

Role of Nrf2 in Alcoholic Steatohepatitis

The alcoholic liver disease involves a variety of liver diseases, 
from moderate metabolic abnormalities (steatosis) to serious 
conformation of hepatic diseases like alcoholic steatohepatitis, 
HCC, and cirrhosis.97 A major factor that helps in the progression 
of alcoholic-induced hepatic illness is the chronic consumption 
of alcohol, which increase the formation of reactive oxidants.98,99 
It is metabolised by three enzymatic pathways:100 alcohol 
dehydrogenase oxidises ethanol in hepatocytes, and cytochrome 
P450 2E1(CYP2E1) catalyses microsomal oxidation.97 Fatty acid 
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ethylene synthase catalyzes non-oxidative metabolism. Alcohol 
is broken down by the enzyme CYP2E1 into ROS such as H2O2 
and O2. Additionally, by raising the NADH/NAD ratio, alcohol 
metabolism causes fatty liver disease. When CYP2E1 (E47 cells) 
is over-expressed in Hep G2 cells, Nrf2 miRNA and protein levels 
are higher than in control Hep G2 cells (C34 cells). The nuclear 
translocation of Nrf2 and Nrf2-ARE binding affinity is enhanced 
in E47 cells and Nrf2 helps in the regulation of genes like GCLC 
and HO-1.101

Nrf2 stimulation is further effective in opposition to 
ethanol-induced hepatic fibrosis and liver toxicity.21 Nrf2 
activation by 1,2-Dithiole-3-thione (D3T) is used to investigate 
the impact of Nrf2 -induced antioxidant factors in mice exposed 
to ethanol.102,16 D3T reduced the production of ethanol-induced 
reactive oxygen species and apoptosis, which shows that 
initiation of Nrf2 can destroy ethanol-initiates apoptosis.6 By 
initiating the Nrf2-mediated signaling pathway, the coupling 
of curcumin and baicalin is used for the prevention of ALD by 
enhancing the downstream antioxidant enzyme NQO-1 and 
HO-1 expression.103 Sulforaphane is an activator of Nrf2 which is 
found in brassica vegetables involving broccoli, and cabbage, and 
is further helpful in preventing alcohol-initiates liver steatosis.6 
Lastly, Nrf2 signaling effectively enhances the regulation of the 

Very Low-Density Lipoproteins Receptor (VLDLR), which helps 
in the progression of liquor initiates damaging to the hepatic.104

Viral hepatitis

Viral hepatitis represents one of the most widespread liver 
diseases worldwide.5 Global Health Sector Strategy (GHSS) on 
viral hepatitis 2016-2021 was approved by the World Health 
Assembly in May 2016. According to GHSS, viral hepatitis may 
not be dangerous to the population by 2030, with decreasing 
contamination by 90% and mortality by 65%.105 Viral hepatitis 
having types A, B, C, D, G, and E, types B and C most commonly 
cause liver cirrhosis and fibrosis. Hepatitis B Virus (HBV) and 
Hepatitis C virus (HCV) infection are the indicator factors in the 
development of persistent liver disease.74

Nrf2 in Hepatitis B (HBV)

HBV is the smallest DNA, belonging to the family of 
Hepadnaviridae and the genus Orthohepadnavirus.106 Hepatitis 
B has four genomes: the polymerase, surface proteins (LHBs, 
MHBs, SHBs), and the core protein containing the regulatory 
protein HBx its secretory variant HBeAg. Chronic Hepatitis B can 
initiate hepatic fibrosis and cirrhosis, and it is also responsible for 
HCC.107 HBx is a factor that helps in initiating the production of 

Figure 3:   Post-translational of Nrf2.
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ROS. Hepatitis B includes HBx and LHBs, both are responsible 
for activating the NF-κB which results in the formation of 
pro-inflammatory cytokines.108 Additionally, HBx also interacts 
with p62 which traps Keap1109 and prevents it from interacting 
with Nrf2, thus stabilizing Nrf2, and enabling its translocation to 
the cell nucleus.110 Thus, Nrf2, is stimulated because of HBx p62 
Keap 1 complex formation as shown in (Figure 4).111 The initial 
steps in the activation of c-Raf are triggered by both regulatory 
proteins (HBx and LHBs).108 The HBV-dependent stimulation 
of Nrf2, was associated with the cRaf stimulation.112 It was also 
demonstrated that when the human HBV genome was inserted 
into the stable cell lines HepAD 38 and HepG2.215, the regulation 
of numerous Nrf2-ARE pathway-regulated cytoprotective 
genes was elevated both in vitro and in vivo in comparison to 
HBV-negative HepG2 cells.113

Role of Nrf2 in Hepatitis C Virus (HCV)

Hepatitis C virus is a positive-strand RNA virus belonging to the 
Flavivirus family within the genus Hepacivirus.114,115 Hepatitis 
C infections are the primary initiation of chronic liver disease 
globally involving cirrhosis, fibrosis, and HCC.116 In human liver 
resident cells, HCV is linked to oxidative stress, chronic HCV 
patients have considerably higher levels of oxidative state markers 
such as malondialdehyde, nitric oxide, and myeloperoxidase 

activity. HCV causes a larger level of ROS production as compared 
to certain viral pathogens; individuals who suffer from permanent 
hepatitis C have more than an 80% chance of increased acquiring 
the chronic illness.117 Human HCC cell line, HCV infection of 
Huh-7 cells which increased reactive oxygen species generation, 
and nuclear translocation of Nrf2 in a time-dependent manner, 
causes the production of ARE-regulated genes, which protect 
the cell protein from oxidative stress.118 The phosphorylation and 
resulting nuclear translocation of Nrf2 in HCV-infected cells are 
initiated by a mitogen-activated protein kinase, casein kinase 2, 
phosphoinositide-3 kinase, and PKC.119

According to the report, curcumin suppresses the PI3K/
Akt-SREBP-1c pathway, which prevents the hepatitis C virus 
from replication. Additionally, it also found that curcumin can 
reduce the chances of hepatitis C virus-related hepatocellular by 
its ability to defend against HCV infection.120

Role of Nrf2 in hepatocellular carcinoma (HCC)

HCC would be the fifth-highest widespread cancer in the 
world, 800,000 cases identified each year.106 The malignant 
transformation of hepatocytes is usually induced during chronic 
inflammation and followed by liver fibrosis resulting in the 
formation of HCC.121 Nrf2 also helped in the conservation of 

Figure 4: Involvement of Nrf2 in HBV stimulation. (1) HBx protein promotes viral replication, the growth of HBV correlated with hepatocellular carcinoma, 
the viability of the contaminated cell, and the demonstration of the contamination by activating the c-Raf-MEK-ErK signal transduction pathway and then 

activating Nrf2. (2) HBx increases p62 and then interacts with Keap1 resulting in the formation of HBx-p62-Keap1 complex in the cytoplasm. (3) Stimulation 
of Nrf2 by enhancing the regulation of lysosomal component PSMB5 in HBV-positive tissues and decreasing immunoproteasomes causes antigen activity 

and removal from the immune response.
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hepatocellular carcinoma cells by enhancing the reaction of 
FGFIg to endoplasmic reticulum condition.122 The oxidative state 
promotes TGF- which is correlated with the intensity of cell injury 
and hepatic fibrosis.123 TGF- increases ROS levels by preventing 
the formation of GSH and antioxidant enzymes, as well as NOX4 
which is NADPH oxidase.15 TGF-β plays an important part in 
the development of HCC by inducing apoptotic, antiapoptotic 
cellular pathways.

Capsaicin (trans-8-methyl-N-vanillyl-6-zonisamide) would be a 
homovanillic compound that is present in red-hot peppers that 
possess chemopreventive effects.124 When Hep G2 cells are treated 
with capsaicin, then it helps in the production of ROS, further, 
they encountered NQO-1 decreased its enzyme activity. As a 
result, increased reactive oxygen species initiate the PI3K-Akt 
signaling pathway via the phosphorylation of Akt, which helps 
in the stimulation of Nrf2. Thus, capsaicin inhibited the NQO-1 
activity, proceeding with the formation of ROS in HepG2 cells.125 
Tussilagonone is a compound derived from the medicinal plant 
Tussilago farfara L could activate further and move Nrf2 into the 
nucleus. NQO-1, a phase 2 detoxifying enzyme, was activated by 
TGH in Hepa1c1c7 and BPrc1 cell lines. Thus, tigloylgomsin can 
be used for the prevention of HCC.126

Role of Nrf2 in hepatic cirrhosis

Hepatic cirrhosis is a pathologic disease in which normal liver 
cells are removed by granulation tissue.127,128 Cirrhosis is defined 
as a deposition of ECM like gelatin1,3,4 and Alpha-Smooth 
Muscle Actin (α-SMA) which eventually leads to cirrhosis of the 
liver. Most commonly it is caused by the accumulation of alcohol 
consumption, viral hepatitis, long-term use, and exposure to 
hepatic chemicals.129 It was demonstrated that alcoholic cirrhosis 
helps in increasing Nrf2 miRNA expression as compared to the 
normal liver.130 Recent research revealed that miRNA200a targets 
Keap1, along with miRNA dysregulation in liver fibrosis and these 
results help in the degradation of mRNA Keap1 in the activated 
hepatic stellate cells.131

Role of Nrf2 in hepatic Fibrosis

Hepatic fibrosis is characterized by an excessive amount of 
deposition of inflammatory scar in the hepatocellular throughout 

the healing process which further result in the formation of 
cirrhosis and liver failure and sometimes also cause carcinoma.132 
Hepatic fibrosis occurs because of the imbalance between the 
breakdown and production of extracellular proteins which 
further causes the deposition of ECM133 whereas the stimulation 
of HSCs.134-136 Hepatic stellate cell is pericytes that are present in 
the perisinusoidal region and play a role in hepatic fibrosis, which 
leads to the development of granulation tissues with hepatic 
damage.137 Nrf2 stimulation may prevent reactive oxygen species 
which activate the NLRP3 inflammasome and decrease the IL-1 
and TGF-, which suppress the HSC stimulation and accelerate the 
collagen degradation. Additionally, the antioxidant enzymes and 
Nrf2 /ARE activate the regulation of mitochondrial-dependent 
apoptotic proteins such as B-cell lymphoma-2(Bcl-2), Bcl-2 
associated X protein (Bax), and caspase-3 which help in reducing 
the mitochondrial dysfunction, liver cell injury, fibrosis.138 It was 
found that morin may protect by increasing the activation of Nrf2 
and its upstream anti-oxidant factors such as HO-1 and NQO-1 
by decreasing the production of α-SMA, collagen Ⅰ, and collagen 
Ⅲ in CCl4-induced liver injury.139

Structure-Activity Relationship of Flavonoids as an 
Antioxidant
Flavonoid

Flavonoids are 1,4-benzopyrone compounds having pyrene and 
phenolic rings. The chemical nature of flavonoids is characterized 
by the degree of hydroxylation and degree of polymerization and 
another substitution and conjugation.140 A phenolic hydroxyl 
group is present in the ring, flavonoids containing antioxidant 
properties as free radical scavengers and hydrogen donating 
properties, and singlet O2 scavengers and alloy chelates.141,142 
The activity of flavonoids as an antioxidant is changed via the 
no and distribution of the hydroxyl group and the A and B rings 
as well as the degree of conjugation in the middle of the C and 
B rings. The glycosylation reduces the antioxidant properties of 
phytochemicals. Flavonoids possess antioxidant effects because 
of the immediate scavenging of ROS and accomplishment as ions 
scavenging properties143 because of sharing of a hydrogen atom. 
These antioxidants further act as a single-electron transfer.144 By 
reacting with the reactive elements of the ions, flavonoids stabilize 

Compound Core structure
Morin R3, R5, R7, R4’, R6=OH
Dihydromyricetin R3, R5, R7, R3, R4, R5=OH
Quercetin R3, R5, R7, R8,R4=OH
Luteolin R5, R7, R3’,R4=OH
Baicalin R5, R6, R7=OH
Chyrsin R5, R7=OH
Apigenin R5, R7, R4’=OH

Table 2: Flavonoids have antioxidant activity.
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the ROS radicals that are inactive due to the strong affinity of the 
OH of the phytonutrients.145 The common structure of flavonoids 
is shown in (Figure 5A).

These are some of the flavonoids which show antioxidant activity 
as demonstrated in Table 2.146

Structural Characteristics of Flavonoids

Flavonoids that show antioxidative activity have some of the 
following structural characteristics as shown in (Figure 5B).

The o-trihydroxy (3’,4’,5’,) thiol compound present in the 
structure phenyl ring is responsible for the greatest affinity of the 
phytonutrients for the phenoxy radical by hydrogen bonding.147

The OH is located at both 3 and 5 and is important for the 
maximal radical scavenging activity.148

Due to the presence of a double bond at C2-C3 double bond which 
is beneficial for antioxidant properties and anti-viral activity.149

Functional Group present in Flavonoid
Hydroxyl Group

The Hydroxyl group is present in the B-ring which is responsible 
for donating a hydrogen atom to peroxyl and hydroxyl and 
peroxynitrite, which stabilizes and produces stable phytonutrient 
radicals.150 In accordance with the overall no of hydroxyl groups, 
the arrangement of flavones and flavanones will increase 
continuously.151 B ring contains 3’,4’, and 5’, catechol moieties in 
the structure which are responsible for lipid peroxidation. In 
the case of A ring, its substitution pattern shows an antioxidant 
effect. Presence of OH at 5,7 shows antioxidant activities. A ring 
containing 3-OH is responsible for various activities such as 
antioxidant and anti-radical activity.152

C2-C3 double bond and 3-Hydroxyl group and 
4-Keto group

When it comes to flavonoids containing a thiol moiety on the 
B-ring, in the C-ring loss of any functional group, the 4-keto 
group, the C2-C3 double bond, 3-hydroxyl group moiety 
proceeds to decrease antioxidant activity.153 When A and B rings 
are conjugated then it allows the aromatic ring may exhibit a 
resonance effect that stabilizes the flavonoid radical therefore it 
is crucial for carrying out the 3’,4’,-catechol moiety to stabilise 
phenoxy radicals.140

Glycosylation

Glycosylation at C6 and C8 positions may increase the antioxidant 
activities by enhancing solubility, whereas Glycosylation at O3 
and O7 can improve certain activities by increasing the solubility 
of flavonoids.154

Effect on intracellular antioxidant enzymes

The mechanism of Flavonoids is dependent on the intracellular 
activities of enzymes similar to Superoxide dismutase, CAT, and 
GSH-Px.155

Flavonoids and Nrf2 Modulation

Flavonoids are most abundantly found in various types of 
fruitages, comestibles and ingredients of vegetable having 
nutritional products and significant roles in the prevention 
of a wide range of disease139 like anti-bacterial, anti-viral, 
anti-inflammatory, anti-ulcer, anti-stress, anti-atherosclerosis, 
anti-tumour properties apart from these activities, flavonoids are 
commonly considered as the most effective natural antioxidant 
found in plants. The diversity of the flavonoid structure was 
influenced by the replacement of different areas and no of OH, 
CH3O and glycoside on the fundamental carbon backbone of 
C6-C3-C6.156

Studies have indicated that flavonoids can stimulate Nrf2157 and 
ARE in different ways.158,159 Nrf2 nuclear translocation to the 
nucleus and activation of Nrf2 to the ARE both are facilitated 
by flavonoids. Li et al., in 2018 used the NAD(P)H Quinone 
Reductase (QR) assay for examining the possible Nrf2 stimulating 
effect of different flavonoids categorised as flavones, flavonoids, 
dihydro flavanols, isoflavones, dihydrochalcones in marine 
hepatoma Keap1 C7C cell. Flavonoids especially flavanol, have 
a variety of health benefits including the ability to protect the 
liver from ALD, NAFLD, others.160,161,162 Flavonoids also inhibit 
the activities of control molecules that initiate the inflammatory 
process, including phosphodiesterase, phospholipase A2, 
lipoxygenase and cyclooxygenase (COX).163 Flavonoids target 
several signalling pathways including protein kinase B (Akt/
PKB), phosphatidylinositol-3 kinase and mitogen-activated 
protein kinase.164 The Flavonoids and Nrf2 modulation are shown 
in Table 3.

Quercetin

Quercetin belongs to the flavanol subclass, which contains 
oxygen (a carboxyl group) at the 4-position of the heteroaromatic 
carbon chain and contains double bonds present at 2 and 3 
positions.177 It also contains five classes of OH groups 3,5,7,3’,4’.178 
Quercetin is also known as an antioxidant and reactive 
oxygen species which helps in reducing alcoholic cytotoxicity 
in the liver which is induced by Nrf2. Quercetin has been 
demonstrated to promote the phase 2 detoxification of enzymes 
such as HO-1, NQO1, and Glutathione S-Transferase (GST).179 
According to reports, quercetin enhanced the regulation of 
Heme oxygenase-1 by inducing ARE to attach with the Nrf2 
in the Heme oxygenase-1 gene promoter region.1 Further, it 
also enhanced Heme oxygenase-1 activity in LPS-treated rats, 
D-galactosamine by suppressing haemoglobin concentration of 
alanine aminotransferase, affecting the liver cytotoxicity and liver 
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protection activity. Finding the capability of quercetin to repair 
the alcoholic-initiated peroxidation in rat hepatocytes, indicates 
that it may be suitable as a hepatoprotective natural product.180 
New research studies discovered that quercetin combines with 
Keap1 and prevents it from interacting with Nrf2.181 In many 
plants, quercetin reduced the hepatotoxicity caused by CCl4 
primarily by increasing the regulation of detoxifying the enzymes 
in the mouse liver. Quercetin also increases the transcriptional 
level of Nrf2 and Thioredoxin (Trxs), and Peroxiredoxins (Prxs). 
According to in vitro research on the L-02cell lines found that 
quercetin may protect the liver against hepatotoxicity initiated 
by various agents such as aminophenol, and clivorine by the 
regulation of Nrf2 and JNK.182 HO-1 activation, particularly by 
the ERK/Nrf2 transduction mechanism further influences the 
action of quercetin via p38.183

Baicalin

Baicalin is a phytonutrient found in a Chinese medicinal plant 
known as a Baikal skullcap or Chinese skullcap.184 Chemically, 
it is known as 5,6-dihydroxy-2 phenyl-4H-1-Benzopyra
n-4-one-7-O-D-B-glucuronic acid185 it contains anti-oxidation 
and anti-inflammatory pharmacological activities.186 Along 
with the cytochrome p450, Baicalin potentially modifies 
the transcription factors such as NF-B and Nrf2, which are 
significant mediators of inflammatory and anti-oxidant defensive 
systems in alcoholic-initiates hepatic damage in vitro, baicalin 
also regulates the stimulated Keratinocytes cells.187 Baicalin 
regulates the HO-1 expression to resist ethanol-initiates hepatic 
destruction and apoptosis as well as necrosis of hepatocytes.103 In 

acetaminophen-initiates L-02 human liver cells, baicalin regulates 
the Nrf2/ARE signalling pathway via non-canonical stimulation 
of Nrf2 via p62.160

Apigenin
Apigenin (4,5,7, tri-hydroxy flavone) is extracted from fruits 
and leafy vegetables, enhancing antioxidant properties and 
protecting against HFD-initiates liver steatosis in rats, initiating 
the protective effects of hepatic steatosis.188,189 Apigenin reduced 
the HFD-induced effects which are an increase in TG, attenuated 
Nrf2 translocation into the nucleus, enhanced regulation of 
antioxidant proteins such as SOD, peroxidase and GSH-Px and 
changed pathological response (steatosis, lipid droplets in rats). 
Apigenin prevents the hepatic organ from ethanol-initiates 
damage, and HFD-induced hepatic toxicity through the activation 
of Nrf2.190

Hyperoside
Hyperoside is extracted from Drosera rotundifolia L., seeds of 
Hypericum perforatum L., and Cuscuta Chinensis Lam generally, 
having many bioactive characteristics like as anti-thrombotic, 
anti-viral and anti-inflammation, anti-fungal, hepato-protective, 
and especially it possesses anti-oxidative properties.81 Hyperoside 
also called quercetin O-glycoside and is a vivid yellow, its 
aglycone is quercetin. Hyp belongs to the genus Crataegus, 
and it is closely related to the Hypericaceae, Rubiaceous, and 
Lamiaceae.191 Hyperoside acts as an adequate hepato-protective 
agent by lowering hepatic damage because of oxidative stress 
which was initiated by chemicals such as carbon tetrachloride 

Figure 5: General structure and SAR of flavonoid.
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CCl4, H2O2 and tert-butyl-hydroperoxide (t-BHP). Hyperoside 
lowers the H2O2-induced liver cell injury via the modulation of 
the Nrf2-ARE, enhanced GSK-3β phosphorylation at Ser-9.81

Hesperidin

Hesperidin, also called 3’,5’-hydroxy-4’-methoxy-7-ruti
nosyloxyflavan-4-one, a bioflavonoid and flavanone glycoside 
which is made up of the 2-phenyl-4-chromone hesperidin attached 

to the cellulose 6-O-(6-deoxy--L-mannopyransosyl)-D-glucose. 
It is a nutrimental substance found in oranges, tangelos, and 
tangerines.192 Hesperidin also called hesperidoside, has B ring 
attached to the methoxy group and hydroxyl substituents 
and contains phenolic OH groups, which help iron for 
decreasing the generation of ROS and RNS.193 It possesses 
various pharmacological properties including antioxidant, 
anti-inflammation, hepatoprotective as well as anti-tumour 

Compound Structure Sources MOA References
Quercetin
(Flavanols) HO

OH

O

O
OH

OH
OH Onion, curly, leeks, 

Broccoli apples, tea, 
capes, blueberries with 
onion, R. arboreum.

Increase SOD and 
up-regulating HO-1.

165,166

Baicalin
(Flavones)

OH
OH

O

O

O

O

OH

OH

OH

OH

O Scutellarin braicalensis 
Georgi.

Nrf2-initiated 
antioxidant activity for 
protecting hepatocytes 
from inflammation, 
fibrosis.

167

Apigenin
(Flavone)

HO O

OH

OH
O

Parsley, chamomile, 
celery, vine-spinach, 
and leaves of A. 
fistulosum.

Nrf2-PPARy decrease, 
increase mRNA 
expression of Nrf2.

168

Hyperoside
(Flavonol)

OH

HO

O

O O

OH

OH
OH

O

OH

OH

OH
Saccharomyces cerevisiae 
leaves.

Regulating the 
expression of nrf2 in 
liver fibrosis.

169

Hesperidin
(Flavanone)

CH2

OH

HO

OH

O
CH3

Sweet orange, lemon
Citrus unshiu, Citrus 
mitis, Citrus sinesis.

Increased mRNA 
expression and 
increased Nrf2 and 
HO-1.

170,171

Luteolin
(Flavone)

HO

OH

O

O

OH
OH

Celery, Parsley, 
chrysanthemum 
flowers.

Increase nuclear 
translocation of Nrf2.

172

Morin
(Flavanols) OHO

O
OHHO

HO HO Morus aliba (white 
mulberry), Psidium 
guava L. (guava leaves).

Hepatoprotective 
activity via activating 
Nrf2/HO-1.

173

Resveratrol
(Flavanols) OH

OH

OH

Peanuts, Grapes, Red 
wines (Polygonum 
cuspidatum).

Increase the nuclear 
translocation of Nrf2 
and help in HCC 
pathogenesis.

174

Silymarin
(Flavanones)

O

OH

HO

O
OH

O

O
OH

OH

O

Mariaum Silybum (Milk 
thistle).

Activated in HSC 
by increasing the 
translocation of Nrf2.

162

Rutin
(Flavonol) O

OOH
O O OH

OHHO

OH

OHHO

O
O

OH OH

CH3OH

Ficus species. Increase of Nrf2, HO-1 
and AMPK activity.

175,176

Table 3:  Flavonoids and Nrf2 modulation.
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properties.194 Hesperidin modulates the Heme oxygenase-1 via the 
stimulation Nrf2/MAPK/ERK pathway.195 Hesperidin prevented 
CYP-initiates inflammation and lipid level via increasing hepatic 
PPAR expression and decreasing NF-B expression. PPAR also, 
help in the protection in opposition to the inflammatory and 
oxidative state by the stimulation of the Nrf2 pathway and nuclear 
factor kappa-B stimulation.196

Resveratrol

Resveratrol is also known as a 3,4’,5-stilbenetriol combination197 
and present in shrubs and fruits like grapes and is also established 
in the root of Indian poke, Japanese knotweed198 which is 
well-known for its antioxidant properties and betatrophin. 
Resveratrol also prevents Liver X Receptor alpha (LXR)-
dependent liver adipogenicity by anti-oxidant properties.199 
Resveratrol activates Nrf2 via transcriptional activity by 
protecting the nucleus from oxidative stain both in vivo and 
in vitro depending on the Nrf2.200 Resveratrol enhanced the 
interaction between Nrf2 and p62 thus separating the interaction 
between Nrf2- KELCH-like ECH-associated protein. It also 
stimulates Nrf2/ARE pathway by initiating the p38 MAPK and 
SIRT1/FOXO1 pathway.158 Resveratrol increased the enzymatic 
activities of antioxidant enzymes like NQO-1, GPx, GST, and 
SOD in hepatocytes.201 Resveratrol enhanced Nrf2 transactivation 
and stimulated the regulation of HO-1 and paraoxonase-1 in liver 

(HUH7). The mechanism of Resveratrol is illustrated in (Figure 
6).202

Morin

Morin is a flavonoid which play an important role in many 
activities such as antioxidants, hepatoprotection, and decrease 
blood sugar. Chemically it is known as (2-(2,4-dihydroxy 
phenyl)-3,5,7, -tri-Hydroxy chrome-4-one). It is extracted from 
various fruits such as Macluria porifera (Osage orange), Maclura 
tincture (old fustic) and the branches of Psidium guajava (guava). 
Morin protected hepatocytes from the toxicity of acetaminophen 
and the response was connected to the reactivation of Nrf2 in 
culture cells. The inhibition of Nrf2 ubiquitination as well as an 
enhancement in nuclear Nrf2-retention and interaction with 
the capacity of ARE/Nrf2.203 Additionally, it improves cellular 
defence by decreasing the oxidative condition, which inhibits the 
activation of GSK-3 and Fyn kinase.204

Silymarin

Silymarin is isolated from the milk thistle plant,205 Mary’s thistle 
(Silybum marianum).84 Silymarin contains the major constituents 
of six flavonolignans such as (Silybins A and B, Isosilybins A 
and B, silychristin and silydianin).206 Silymarin is also called an 
antioxidant that might promote Nrf2 translocation when the 
MCD diet is administered to a mouse liver and further used in 

Figure 6: Demonstrated the mechanism by which resveratrol initiates Nrf2 transcriptional activity.
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hepatic treatment. Silymarin is recognized under the phase 4 
clinical trial for the treatment of NAFLD and NASH.80

Rutin

Rutin is found in oranges (citrus Sinensis), in flowers such as 
buckwheat (Fagopyrum Esculent ump), grapes nut (citrus para 
del), and edible fruits.162 In hepatocytes, rutin more potentially 
increased Nrf2 expression and decrease nitric oxide synthase. 
Rutin also shows a hepatoprotective effect in opposition to 
CCl4-initiates hepatic destruction in rats to prevent further 
hemodynamic changes which are related to ischemia and 
reperfusion through antioxidant activity.207

Luteolin

Luteolin is isolated from celery, thyme, and parsley37 and is 
also found in many vegetables such as onion, broccoli, and 
cauliflowers.208 With the stimulation of PI3K/protein kinase B 
(Akt) and ERK1/2 signalling, luteolin also regulates the Nrf2/
ARE pathway in HCC HepG2 cells, which further enhances the 
miRNA and nucleoprotein regulation of Nrf2 and HO-1.160

CONCLUSION

Flavonoids have significant hepatoprotective potential, one of the 
key mechanisms by which they exert their effects is through the 
modulation of the Nrf2/ARE pathway. The Nrf2/ARE pathway 
plays a critical role in protecting liver cells from oxidative stress 
and inflammation, which are key factors in the development 
of liver diseases. Nuclear erythroid 2-related factor 2 (Nrf2) 
can activate cytoprotective genes and has a crucial role against 
oxidative stress to protect hepatic cells from oxidative damage. 
It has been identified that Nrf2 is also a prevailing factor in the 
regulation of ARE-mediated activation of other defensive genes, 
including GST, GCS, and HO-1. Flavonoids can stimulate the 
Nrf2/ARE pathway, by enhancing the expression of antioxidant 
and detoxifying enzymes and promoting liver cell survival and 
regeneration. This suggests that flavonoids may have therapeutic 
potential for the prevention and treatment of liver disease. 
However, more research is needed to fully understand the 
mechanism underlying the hepatoprotective effects of flavonoids 
and to identify specific flavonoids that may have clinical 
applications. Nevertheless, the promising finding suggests that 
flavonoids may represent a novel and effective approach to the 
prevention and treatment of liver diseases.
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ABBREVIATIONS

Nrf2: Nuclear Factor erythroid 2-related Factor 2; ROS: Reactive 
oxygen species; AMPK: Adenosine monophosphate-activated 
protein kinase; ARE: Antioxidant response element; JNK: c-Jun 
N-terminal kinase; MAPK: Mitogen-activated protein kinase; 
Neh: Nrf2-ECH Homology; NQO-1:NAD(P)H: Quinone 
oxidoreductase-1; PI3K: Phosphatidylinositol-3-kinases; sMAF: 
Small musculoaponeurotic fibrosarcoma; GST: Glutathione-S 
transferase; KEAP1: KELCH-like ECH-associated protein; 
GPx: Glutathione peroxidase; Akt: Protein kinase B; HCC: 
Hepatocellular carcinoma; ALD: Alcoholic liver disease; NASH: 
Non-alcoholic fatty liver disease; Trx: Thioredoxin reductase; AA: 
Amino acids; PERK: Protein kinase-like ERK kinase; HO-1: Heme 
oxygenase-1; SOD: Superoxide dismutase; ECM: Extracellular 
matrix; FXR: Farnesoid X receptor; CBP: CREB-binding 
protein; HSCs: Hepatic stellate cells; Rbx: Ring box protein; 
SIRT1: Sirtuin 1; TNF: Tumoral necrosis factor-alpha; UbcM2: 
E2-ubiquitin-conjugating enzyme; GCLC: Glutamate-cysteine 
ligase catalytic subunit; GSK3: Glycogen synthase kinase 3; 
GST: Glutathione-S-transferase; HBsAg: Hepatitis B surface 
antigen; HBx: Proteins of HBV; IHBs: Intracellular hyaline 
bodies; LXR: Liver X receptor-alpha; NASH: Non-alcoholic 
steatohepatitis; IL-1: interlenkin-1; NF-B: nuclear factor 
kappa-B; Bcl2: B-cell lymphoma-2; OS: Oxidative stress; PPARƴ: 
Peroxisome proliferator activated receptor gamma; SOD-1: 
Superoxide dismutase-1; SOD-2: Superoxide dismutase-2; 
SOD-3: Superoxide dismutase-3; LPS: lipopolysaccharide; CO: 
Carbon monoxide; Bax: Bcl-2 associated X protein; MCD: 
Methionine-and choline-deficient; HFD: High-Fat diet; αSMA: 
Alpha-smooth muscle pain; RNS: Reactive nitrogen species; 
ERK: Extracellular signal-regulated kinase; FOXO1: Forkhead 
box protein O1; MPKK: Mitogen-activated Protein Kinase 
Kinase; SREBP-1c: Sterol regulatory element-binding protein-1c; 
NLRP3: Nucleotide-binding oligomerization domain-like 
receptor 3.

SUMMARY

Liver disease accounts for approximately 2 million deaths per 
year worldwide, 1 million due to complications of cirrhosis , and 
1 million due to viral hepatitis and hepatocellular carcinoma. 
Nuclear erythroid 2-related factor 2 (Nrf2) is a central regulator 
of antioxidative response elements-mediated gene expression. 
It has a significant role in adaptive responses to oxidative stress 
by interacting with the antioxidant response element, which 
induces the expression of various downstream targets aimed at 
cytoprotection.  Flavonoid is among the most widely investigated 
herbal supplements for preventing liver illness. By triggering the 
normal ARE target affinity site, Nrf2 encourages the production 
of metabolic enzymes. It can also enhance the antioxidant and 
inflammation response and play a significant role in the illness. 
The present review briefly summarizes the mechanisms that 



Indian Journal of Pharmaceutical Education and Research, Vol 58, Issue 1 (Suppl), Jan-Mar, 2024 S53

Sharma, et al.: Role of Flavonoids in Regulation Nrf2/Keap 1 Pathway for Liver Diseases

regulate the Nrf2/Keap1–ARE signaling pathway and the latest 
advances in understanding how flavonoid encourages the Nrf2 
against oxidative stress with hepatoprotective effects. Further 
studies regarding the precise mechanisms of Nrf2-regulation 
are necessary for determining, whether flavonoid regulates Nrf2 
and can serve as a therapeutic target in the treatment of hepatic 
disease.
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