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ABSTRACT
Background: Klebsiella pneumoniae is a ubiquitous opportunistic pathogen that poses a 
significant threat to hospitalized patients by causing a wide range of infections. The alarming 
increase in clinical resistance to all current antibiotics necessitates the urgent identification 
of novel therapeutic targets and development of effective antimicrobial agents. Materials 
and Methods: Using pan-genomic analysis of the core protein repertoire of K. pneumoniae, 
we applied a subtractive proteomics approach to uncover potential drug targets. This has led 
to the identification of CsgD as a promising candidate. Structural modelling and validation 
of CsgD were performed. A comprehensive virtual screening of 29,384 natural compounds 
sourced from Traditional Chinese Medicine (TCM) libraries was performed against CsgD, 
which yielded three candidates with low binding energies and desirable pharmacodynamic 
profiles, as validated by Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) 
prediction.100-nanosecond molecular dynamics simulations were performed to further 
substantiate their efficacy. Results: Through a rigorous virtual screening process using the 
TCM database, we identified three compounds with potential antibacterial activity against K. 
pneumoniae. In particular, mydriatin stands out as a potent CsgD inhibitor, demonstrating a 
significant inhibitory effect on antibiotic-resistant strains of K. pneumoniae in vitro antibacterial 
activity evaluation. Conclusion: This study identified mydriatin as a potential therapeutic agent 
targeting CsgD in K. pneumoniae, offering a promising strategy for the development of novel 
antimicrobials to combat drug-resistant infections caused by this pathogen. Our results highlight 
the importance of using natural product libraries and computational methods in the discovery 
and rational design of novel antibiotics to address the pressing challenges posed by multidrug 
resistance in K. pneumoniae.

Keywords: In vitro evaluation, Klebsiella pneumoniae, Molecular docking, Molecular dynamics 
simulation, Subtractive proteomics, Virtual screening. 

INTRODUCTION

Klebsiella pneumoniae, a member of the Enterobacteriaceae 
family, is a prevalent cause of various opportunistic infections, 
encompassing urinary tract infections, pneumonia, and 
liver abscesses.1,2 K. pneumoniae has emerged as a major 
threat to clinical and public health3 owing to the emergence 

of Multidrug-Resistant (MDR) strains that produce 
Extended-Spectrum Beta-Lactamases (ESBL) or Carbapenemases 
(CRKp). Currently, antibiotics are ineffective in combating MDR 
pathogens. Although colistin and carbapenems are considered 
highly potent antibiotics, carbapenemase-producing strains 
of K. pneumoniae have developed resistance to these agents.4,5 
Therefore, there is a pressing demand for more effective 
treatments for multidrug-resistant infections. One way to 
achieve this is to identify bacterial proteins that could be targets 
of new classes of antibiotics. The identification of new drug 
targets is crucial for drug development. Compared to laboratory 
screening of macromolecules as drug targets, computational drug 
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development, including pan-genome analysis, structure-based 
drug design, and virtual screening, reduces time and money 
consumption.6,7

This study involved a thorough examination of both the core 
and pangenome, aiming to pinpoint therapeutic targets and 
uncover novel drug candidates among a diverse range of 
natural products, encompassing Traditional Chinese Medicine 
(TCM). The exploration of natural products to prevent and treat 
antibiotic-resistant bacterial infections has gained significant 
traction.8,9 Our approach in this study involved a computational 
method based on the pangenome to analyze the core genome of 
K. pneumoniae. This analysis followed a structured sequence of 
steps that included nonhomology to human proteins, assessment 
of bacterial essentiality and virulence, druggability evaluation, 
broad-spectrum analysis, and nonhomology checks against 
human anti-targets. We examined host-pathogen interactions 
and performed nonhomology analysis against gut microbiota 
proteomes to identify human-specific, virulent, essential, and 
non-homologous targets. Subsequently, we generated the 3D 
structure of the identified drug targets. To further advance 
this investigation, we conducted molecular coupling studies to 
identify effective compounds from a library of natural products 
that could target the selected drug candidates. The protein-ligand 
complexes with the most favorable docking results were subjected 
to molecular dynamics simulations to assess the stability of the 
interactions.

MATERIALS AND METHODS

Materials

Data collection Core genome data of K. pneumoniae were 
retrieved from the Pan X (Pan-Genome Analysis and Exploration 
Database) database, and core protein sequences of 500 strains of 
K. pneumoniae were downloaded in FASTA format.

Source of strains

Thirty non-repetitive K. pneumoniae strains clinically isolated 
from Jiangsu Medical College Affiliated Hospital from June to 
December 2023 were collected. The specimens were obtained 
from sputum, bronchoalveolar lavage fluid, blood, pus, wound 
secretions, and urine. The strain was identified as K. pneumoniae 
using a Vitek-2 fully automatic microbiological identification 
drug sensitivity analyzer. Escherichia coli (ATCC 25922) was used 
as the quality control strain. Simultaneously, the ViteK 2 fully 
automatic drug susceptibility analyzer and paper diffusion (K-B) 
method were used for drug susceptibility testing to confirm 
whether it was a multi-resistant strain. The quality control strain 
was K. pneumoniae (ATCC 700603), and the results of the drug 
susceptibility test were interpreted according to the CLSI 2023 
M100 standard,10 The Minimum Inhibitory Concentration (MIC) 
of tigecycline was ≥2 μg/mL. Duplicate bacterial strains isolated 
from the same patient and site were eliminated. Two standard 

isolates of Escherichia coli (ATCC 25922) and K. pneumoniae 
(ATCC 700603) were obtained from the China Medical Microbial 
Strain Conservation Center. All cultures were stored in slant agar 
at 4ºC and used as stock cultures for 14 days.

Methods

Figure 1 presents a flowchart that outlines the process employed 
for discovering new drug targets and potential candidates for K. 
pneumoniae.

Retrieval of the core proteins of K. pneumoniae

The complete proteome sequences of 500 K. pneumoniae strains 
were downloaded from the Pan X: Pan-Genome Analysis and 
Exploration Database.11 These 500 strains were previously 
isolated from all geographical regions of the world. Core proteins 
were obtained from pan-genome alignments. The core protein 
consisted of 666,500 amino acid sequences. Core proteins were 
also preprocessed to remove paralogs with 75% sequence identity 
using the CD-HIT suite.12 Furthermore, sequences less than 100 
amino acids in length were removed. After pre-processing, the 
sequences were reduced to 1,136 amino acid sequences.

Non-homology analysis against the human 
proteome

The BLAST algorithm against the human proteome 
(UP000005640; updated February 2022)13 was performed with 
an E-value threshold >0.005 and restricted the sequence identity 
to <50%.14 Subsequently, the homologous human proteins were 
removed.

Essentiality and virulence analysis

Essential genes are indispensable for pathogen survival.13 We 
performed a BLAST search against the Database of Essential 
Genes (DEG) with a strict E-value threshold of <0.0001 to 
identify the essential genes.15 To evaluate the virulence of protein 
targets, we used the Virulence Factor Database (VFDB),16 which 
evaluates the pathogenic virulence associated with these target 
proteins.

Druggability analysis

Druggability refers to the ability of a protein to bind to a 
drug-like molecule. BLAST analysis of the hypothetical protein 
with an E-value<0.0001 against the DrugBank dataset17 and the 
Therapeutic Target Database (TTD)18 was performed to evaluate 
whether it was a drug-able protein.

Broad-spectrum analysis

A protein can be deemed a potential broad-spectrum protein 
target with homologues across multiple pathogenic organisms if 
it is found in at least 25 bacterial protein kingdoms. To identify 
such hypothetical proteins, the BLAST algorithm was utilized 
with an E-value threshold of less than 0.0001, and proteomic data 
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from 181 pathogenic organisms was obtained from the European 
Bioinformatics Institute (EBI).19,20

Non-homology analysis against human antitargets

Proteins that trigger dangerous side effects under the influence of 
a drug are called antitargets. We performed BLASTp analysis of 
protein sequences using a dataset of known human anti-targets 
gathered from the literature. We applied an E-value>0.005 and 
used a similarity threshold of < 50% to identify potential antitarget 
proteins. Proteins with similarity values<50% were retained.21

Host pathogen interaction

Homologous proteins were discarded to avoid an autoimmune 
response in the host. Non-homologous proteins were calculated 
using the BLAST algorithm in online databases such as HPIDB 
(version 2.0), PHIbase (version 4.2), and PHISTO (version 2.0). 
The value of E was set to <0.0001 and a 1% alignment cutoff of 1% 
was employed.22-24

Non-homology analysis against gut microbiota 
proteomes

A protein homologous to the human intestinal microbiota can 
interact and form bonds with proteins in the intestinal microbiota, 
potentially resulting in unfavorable pharmacokinetic side effects 
in the host. As a precaution, any homologous protein similar to 
the human intestine was excluded using BLASTp with a stringent 
E-value of <0.0001, while the human gut microbiota database was 
assembled from relevant literature sources.25,26

Subcellular location

We conducted subcellular location analysis of the identified drug 
targets. Characterization of the subcellular location of a protein is 
essential for understanding its function. We employed PSORTb 
v 3.027 to predict the subcellular location of the selected proteins 
because it covers a wide range of cell morphologies found in 
archaeal and bacterial organisms.

Figure 1:  Flowchart illustrating the workflow of the current study, which integrates various approaches and tools to identify 
potential drug targets and candidates for treating K. pneumoniae.
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Comprehensive antibiotic resistance

Automated BLAST alignment was performed for the protein 
sequence using the Comprehensive Antibiotic Resistance 
Database (CARD). The results were accompanied by additional 
information from CARD.28

InterPro function analysis

Predicting the functional families of hypothetical essential 
proteins is a crucial step in their characterization. To this end, 
we used InterProScan to predict the functional families of 
hypothetical individual protein sequences. Recognizing the 
functional family of a protein is a prerequisite for evaluating 
its druggability and allows rapid understanding of the role 
of the target protein during the drug development process.29 
InterProScan facilitates the analysis of a protein's function with 
annotations based on predictive signatures within the protein's 
primary sequence.30

Structural modeling and model validation

For structure-based drug design, a thorough understanding of 
the target protein's molecular function and three-dimensional 
structure is essential. Therefore, we employed a homology 
modeling technique to create a structural model of the target 
protein.An AlphaFold2 server was used for this purpose.31,32 
Furthermore, the quality of the modeled protein structure was 
evaluated for its stereochemical integrity using PROCHECK, 
VERIFY3D, and ERRAT on the SAVES server (https://saves.mb 
i.ucla.edu).

Molecular docking
Ligand library preparation

To prepare our ligand library, we performed a virtual screening 
against the TCMSP database (http://tcmspw.com/tcmsp.php), 
which contains 499 Chinese herbs and the composite components 
of each herb (approximately 29,384). Ligand optimization of 
antibacterial small molecules: We used ChemDraw Ultra 8.0 
and Chem 3D 17.1 to construct 3D structures of antibacterial 
drug molecules, and then imported them into Maestro 11.2. The 
"Ligprep" tool to optimise the structures and transform the 3D 
structures with the "OPLS4" force field. The Ligprep tool with 
the "OPLS4" force field was used for structure optimization 
and 3D structure transformation.The molecules in the database 
were preprocessed for protonation, desalting, hydrogenation, 
generation of reciprocal isomers, generation of stereo 
conformations, and energy minimisation using Schrödinger's 
LigPrep module. Pre-processing resulted in 29,384 prescreened 
compounds as ligand libraries because of the reciprocal isomers. 
The Schrödinger 2023-1 QickProp module was used for the first 
screening round according to the pharmacophore rules "Lipinski 
Ro5" and "Verber Ro3,” and 12, 227 eligible hit compounds were 
selected.33

Optimization of target proteins and prediction of 
active sites

Predictive atomic models of protein structures were obtained 
using AlphaFold 2 high-precision predictive protein tertiary 
structure software (https://colab.research.google.com/), which 
uses machine learning methods to aggregate existing knowledge 
of protein structures from protein databases with information 
from sequence comparisons, as well as physical and geometric 
constraints. Raw sequence PDB files were processed by Maestro 
11.9 software to reduce them to 3D models, and the "Protein 
Preparation Wizard" suite was used to automatically assign 
bond sequences, add hydrogens, form zero-grade bonds with 
metals, convert selenomethionine to methionine, add missing 
side chains, and create possible disulfides. Side chains were 
added, possible disulfide bonds were created, heterogroups 
with distances greater than 50 nm from the coordination site 
were deleted, heteroprotonated states were created at pH 7.0, 
and restriction minimization was performed using the OPLS4 
force field until the Root Mean Square error of the heavy atoms 
(RMSD) converged to 3 nm.

After structural optimization of the target proteins using Maestro 
11.2 "Protein Preparation Wizard" tool for hydrogenation and 
dehydrogenation, the target proteins were subjected to the online 
predictive activity pocket software POCASA (https://g6altair.
sci. hokudai.ac.jp) to predict the potential active sites of target 
proteins. Discovery Studio 3.5 software was used to obtain the 
coordinates of the active pockets, and then set the size and center 
of the docking box area by site inputting the coordinate values 
in the "Receptor Grid Generation" program. The size and central 
position of the docking box were set for the docking of small 
molecules of the drug ligands.

Molecular docking

Virtual screening coupling is a cost-effective and time-saving 
method for drug target development and discovery, which can 
help researchers reduce the number of compounds that require 
further experimental analysis. Docking simulations were 
performed using the Glide tool to assess the binding interactions 
between drug targets and ligands. Visualization of the docking 
poses was achieved using Discovery Studio version 3.5. A 
ligand-coupling tool was used to perform molecular coupling of 
the minimized target protein and its optimized original ligand. 
Docking occurs separately for different active sites in the target 
protein. The interaction between the natural compounds and 
the target protein was evaluated using the Glide score and Glide 
energy scoring functions, which consider hydrogen bonds, 
hydrophobic interactions, van der Waals forces, and other 
interactions. The larger the absolute value of the score, the more 
stable the docking complex and the better the binding interaction 
between the compounds and target protein. To analyze their 
interactions, comparisons were made between the docking scores 
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of the natural compounds (ligands) and the target protein, as well 
as between the scores of the original ligand and the target protein.

ADMET profile of selected drug candidates

Ensuring the safety of potential drugs is a primary concern for 
drug development. Early detection of serious drug toxicity and 
adverse effects is critical for streamlining drug development, both 
in terms of time and cost. Therefore, we subjected the shortlisted 
drug-like compounds to a comprehensive evaluation of their 
pharmacokinetic properties, including Absorption, Distribution, 
Metabolism, and Excretion (ADME). This analysis was performed 
using Discovery Studio 3.5. Subsequently, we assessed the toxicity 
profiles of the compounds, taking into account factors such as 
minimal human side effects, immunotoxicity, mutagenicity, 
teratogenicity, neurotoxicity, enhanced penetration, and 
carcinogenic potential.A comprehensive analysis was conducted 
using the pkCSM database. Carbapenems, an effective antibiotic 
for the treatment of K. pneumoniae, were selected as a reference 
to conduct a more comprehensive study on the effectiveness of 
the drug.

Molecular dynamics simulation studies

Using the Desmond software package with the OPLS4 force 
field, we conducted a molecular dynamics simulation test to 
further analyze the dynamics and stability of all the selected 
docked complexes. The solvent molecules were modeled using 
the TIP4P/EW solvent model within a cubic box of size 10, and 
counterions were introduced to balance the system's charge. To 
mimic the physiological saline concentration in humans, a 0.15 
mol/L NaCl solution was incorporated. The simulation was run 
for 100 Nanoseconds (ns), with a trajectory captured every 4.8 
Picoseconds (ps).The simulations were carried out on hardware 
with an nVidia GeForce GTX 4090 3200 MHz Graphics Processor 
(GPU) running on Linux Ubuntu. The 100 ns simulations lasted a 
maximum of 3-5 hr.

Prediction of biological activity based on the 
structure of small molecule compounds

The PASS system is an online service for activity prediction based 
on small-molecule active fragments, which allows the prediction 
of potential biological activities of drug-like compounds. The 
system includes more than 35,000 nonidentical compounds with 
different bioactivities and 500 different types of bioactivities, 
including pharmacological effects, mechanism of action, 
mutagenicity, carcinogenicity, teratogenicity, and embryotoxicity, 
and constitutes a large training set database of these compounds. 
The prediction of compound bioactivities is precisely based 
on the results obtained by analyzing the structure-bioactivity 
relationships of the training set, and the two-dimensional 
MOL-format structures of the constructed Chinese medicine 
monomer compounds were inputted into the PASS SAR training 

set database. After library search and structure matching, the 
portion with prediction accuracy Pa>0.9 was selected as the 
possible biological activity of the compounds studied and used as 
the basis for further research and analysis. Default system settings 
were used for all parameters in the calculation process.

Antibacterial in vitro activity test
Evaluation of antibacterial activity

The antibacterial activities of the compounds were determined 
using the LB liquid culture medium dilution method. First, an 
appropriate amount of LB liquid culture medium was sterilized 
using a high-pressure steam sterilizer and placed on a super-clean 
table for UV sterilization. LB culture medium was added to a 
sterile 96-well plate, and the target compound and control group 
solutions were added to the first well of each column of the 
96-well plate. Second, the compound was diluted to the 10th well 
using the double-dilution method. Finally, the prepared bacterial 
solution was inoculated (except in the last column). After 24 hr 
of cultivation in a constant temperature incubator at 37ºC, the 
OD600 value of each well was measured using an enzyme-linked 
immunosorbent assay (ELISA) reader. The data for each well 
were obtained using the following formula: Inhibition rate 
(%)=100% - (OD test well-OD background well)/(OD blank 
well-OD background well) × 100%. The antibacterial activity of 
each compound was determined by treatment.

Detection of Minimum Inhibitory Concentration 
(MIC)

The Minimum Inhibitory Concentration (MIC) was ascertained 
by employing the microdilution technique outlined in the 
Clinical and Laboratory Standards Institute (CLSI) guidelines.
The determination of MIC helps differentiate between drugs 
that are effective against bacteria and those that are not. MIC 
was determined using the modified Mueller-Hinton (MH) 
broth microdilution method and incubated overnight in an 
incubator (Kavanagh et al., 2019). K. pneumoniae was grown to a 
McFarland standard optical density of 0.500, which corresponds 
to 1.5×108 colonies per milliliter (CFU/mL), which is necessary 
to determine whether the bacteria are susceptible or resistant to 
the antibiotic tested (‘Recommendations for the Technique of in 
vitro Pharmacovigilance Tests,’ 1996). Antibacterial activity tests 
were conducted in vitro on the screened compounds, utilizing 
tigecycline as a benchmark. Initially, compound solutions were 
prepared in DMSO at a concentration of 4 mg/mL and divided 
into three experimental groups (each represented by a column) 
and a control group. The first row received a mixture of 100 μL 
of compound solution and 100 μL of MH broth culture medium. 
Subsequent rows were prepared by serial dilution, where 100 μL 
from the previous row was transferred to the next. Additionally, 
100 μL of culture medium-diluted bacterial solution were added 
to each well, ensuring a final volume of 200 μL per well.
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The control group contained a mixture of 100 μL of compound 
solution and 100 μL of MH broth. The positive control comprised 
100 μL of tigecycline solution and 100 μL of diluted bacterial 
culture, while the negative control consisted of 100 μL of MHB 
culture medium and 100 μL of diluted bacterial culture. The 
culture medium control had 200 μL of culture medium per well, 
and the solvent-induced control tested the impact of DMSO on 
bacterial growth with 100 μL of DMSO solution and 100 μL of 
diluted bacterial culture.After incubation at 37ºC for a specified 
duration, the concentration corresponding to a visually clear 
solution was recorded as the minimum inhibitory concentration.

RESULTS

Pan-genome and core genome analysis
Information obtained from the Panx database revealed that K. 
pneumoniae harbored 3,554 core genes among its total of 27,196 
genes. The amino acid sequences of the core proteins derived from 
these core gene alignments amounted to 666,500. Subsequent 
processing using the CD-HIT tool reduced this number to 1,284 
sequences. After eliminating sequences with fewer than 100 
amino acids, 1,136 core proteins remained (depicted in Figure 
1). These pre-processed core proteins underwent a subtractive 
proteomics approach involving a series of analyses, as illustrated 
in Figure 1. A concise overview of the analysis is provided in 
Table 1.

Subtractive proteomics approach and drug target 
identification.
Non-homology analysis against the human proteome

The core proteins identified using pan-genome analysis served 
as the basis for the discovery of new therapeutic targets against 
K. pneumoniae. To this end, 1136 core proteins were thoroughly 
evaluated by BLAST testing and compared to the entire human 
proteome. The objective of this study was to ascertain the 
non-homologous characteristics of potential therapeutic targets 
by establishing a rigorous E-value threshold of greater than 0.005. 

Consequently, 1,041 proteins were identified as non-homologous 
to human expressed proteins, while the remaining proteins were 
eliminated through a similarity search conducted using BLAST 
against the human proteome.

Essentiality and virulence analysis
Analysis of essential proteins was carried out on the sequences 
derived from the non-homologous sequences to the human 
proteome. Essential proteins are indispensable for the survival 
of pathogens in any given scenario. By utilizing the BLAST 
algorithm against the Database of Essential Genes (DEG), 
critical proteins from K. pneumoniae were identified through a 
similarity search. Furthermore, Virulence Factors (VFs) within K. 
pneumoniae were found to be pivotal in processes like adhesion, 
invasion, colonization, and persistence within the host organism. 
They also serve as key regulators of infection. The identified VFs 
are promising targets for the pathogenicity of K. pneumoniae. 
To explore this potential in more detail, we performed BLASTp 
analysis of these proteins using the VFDB core dataset. In this 
study, a strict threshold of E values<0.0001 and an alignment 
limit of 1% were enforced. Based on the analysis of essentiality 
and virulence, 895 proteins were identified, which should be 
further screened for the identification of drug targets.

Druggability analysis
Proteins capable of forming robust bonds with drug molecules 
fall under the category of druggable proteins. These interactions 
are characterized by high-affinity connections between proteins 
and ligands, which rely on enhanced intermolecular forces. We 
relied on confirmed sources of comprehensive drug-related 
information, such as the Drugbank database25 (version 5.0), which 
includes 4,159 non-redundant drug targets, and the Therapeutic 
Target Database (TTD) with 2,589 identified targets.26

Broad-spectrum analysis
An optimal potential drug candidate promises to address a wide 
range of future infections. A protein is a potential target for 

Sl. No. Step Identified protein
1 Core proteome of K. pneumoniae 666500
2 Removal of paralogous protein sequences at 60% threshold. 1284
3 Removal of protein sequences with < 100 amino acids. 1136
4 Non-homology analysis against human proteome. 1041
5 Essentiality and virulence analysis 895
6 Druggability analysis 469
7 Broad-spectrum analysis 469
8 Nonhomology analysis against human antitargets. 469
9 Host-pathogen interactions 319
10 Nonhomology analysis against gut microbiota. 1

Table 1:  Subtractive genomic analysis steps for K. pneumoniae.
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broad-spectrum drugs if it is not homologous and is present in 
over 25 different bacterial pathogens.34

Nonhomology analysis against human antitargets

The history of drug development is marked by the withdrawal of 
numerous candidates from the market owing to concerns about 
carcinogenicity. Therefore, evaluation of cross-reactivity and 
carcinogenic potential plays a crucial role in the development of 
effective pharmacological compounds.19 Although we excluded 
non-homologous host proteins from non-paralogous sequences 
in our analysis, we also performed anti-target analyses. This 
additional step aims to prevent unintended interactions between 
drugs administered to treat pathogens and host antitargets, thereby 
reducing the risk of harmful side effects.These three  crucial 
processes led to the identification of all 469 proteins, which were 
characterized as drug-like, nonhomologous antitarget proteins 
and occurred in a broad spectrum of the bacterial kingdom.

Host pathogen interaction

Homologous proteins were discarded to avoid an autoimmune 
response in the host. Regarding the specified query proteins, 
we identified a set of 319 proteins that showed characteristic 
host-pathogen interactions.

Nonhomology analysis against gut microbiota 
proteomes

The effectiveness of antibiotics is closely linked to the ecosystem 
of intestinal microbiota. Proteins similar to those in the human 
gut microbiota can potentially disrupt the balance of the gut 
microbiota during drug interactions. Through an in-depth 
analysis of nonhomologous proteins compared to the human 
gut microbiota, we found only one protein, the transcriptional 
regulator protein CsgD (KPHS_44520), with a percentage identity 
of less than 60%. This protein was identified as non-homologous 
and was further investigated.

Drug target property analysis

The DNA-binding transcriptional regulator protein CsgD 
(KPHS_44520) was selected as a new drug target for K. 
pneumoniae using subtractive genomic analysis. The proteins 

were characterized using the following criteria: subcellular 
location, CARD analysis, and InterPro functional analysis.

Subcellular location
Cellular localization was predicted using PSORTb. The 
transcriptional regulator protein CsgD (KPHS_44520) was 
identified within the cytoplasmic region, as shown in Figure 2, 
with a commendable localization score of 9.26. Proteins located in 
the cytoplasmic region offer distinct advantages as potential drug 
targets. This is primarily because of the abundance of enzymes in 
this cell compartment, which makes them more suitable for the 
action of targeted drugs. In fact, cytoplasmic proteins have been 
reported to be favorable therapeutic targets that can be effectively 
and easily targeted by drugs.35,36

CARD analysis
Proteins associated with resistance mechanisms and drug efflux 
pathways are promising therapeutic targets for controlling 
drug-resistant strains of K. pneumoniae. CARD includes tools 
for analyzing molecular sequences, including BLAST and 
Resistance Gene Identifier (RGI) software, to predict resistomes 
based on homology and SNP models. The amino acid sequence 
of the transcriptional regulator CsgD (KPHS_44520) was 
compared with the CARD database, and the annotation of the 
drug resistance gene (CARD) was analyzed. The sdiA gene had 
the highest identity (41%) and was related to the formation of 
bacterial biofilms. The results of the CARD analysis are displayed 
in the Supplementary Data Files (Table S1).

InterPro function analysis
Predicting the functional families of hypothetical essential 
proteins is a crucial step in their characterization. In this 
research, we employed InterProScan to predict the functional 
families of hypothetical protein sequences on an individual basis.
Recognition of the functional family is crucial for determining 
the role of the target protein, particularly in the development of 
drugs for their specific function. As an online tool, InterProScan 
calculates the functional domains within a protein and predicts 
its superfamily, providing essential diagnostic signatures for 
protein classification. In our analysis, InterProScan provided 
predictions related to the functional transcription domain, which 

Figure 2:  The subcellular localisation of the protein. The results indicate that the query 
protein belongs to the cytoplasmic region of the cell.



Indian Journal of Pharmaceutical Education and Research, Vol 59, Issue 2, Apr-Jun, 2025662

Li, et al.: Identification of Novel Drug Targets for K. pneumoniae

serves as a diagnostic marker for the functional domain and types 
of compounds with which it interacts. This protein was found 
to be associated with the biological process of DNA-assisted 
transcription regulation, as shown in Figure 3.

Structure prediction and validation

Because the Three-Dimensional (3D) structure of the identified 
drug target was missing from the PDB database, we used the 
homology modeling approach supported by the AlphaFold 
2 server32 to generate the 3D structure for the DNA-binding 
transcriptional regulator CsgD (KPHS_44520). The confidence 
values of the model structure for most residuals were remarkably 
high, reflecting the accuracy of the model (pLDDT > 85; Figure 
4A). In this plot, lighter green indicates areas of higher error, 
whereas darker green indicates areas of lower error, representing 
the expected position error. AlphaFold provides a confidence 
value per residue (pLDDT) ranging from 0 to 100, where 
intercepts with a value below 50 may indicate a lack of structure 
or connectivity, as shown in Figure 4B.

The constructed model underwent validation using 
PROCHECK, VERIFY3D, and ERRAT tools.37-39 According to 
the Ramachandran plot, 86.1% of the residues resided in the 
most favored regions, 7.0% were in the additionally allowed 
regions, 5.0% were in the generously allowed regions, and only 
four residues fell into the disallowed region, as depicted in Figure 
4C. VERIFY3D assessed the structure and showed that 69.12% 
of the residues had an average 3D-1D score of ≥0.1 (Figure 
4D). Furthermore, the ERRAT plot estimated a quality score of 
88.835% for the developed model (Figure 4E).

Molecular docking
Initially, a High-Throughput Virtual Screening (HTVS) was 
conducted on the compound library previously screened for 
target proteins, and the top 10% compounds with the highest 
scores were selected using the Schrödinger Glide Grid module. 
This was followed by a Standard Precision (SP) screening, where 
compounds were ranked again based on their Glide Scores, and 
the top 10% were further identified. Lastly, an Extra Precision 
docking (XP) was carried out, and the top 10% compounds 

Figure 3:  Presents the results obtained from InterProScan. Panel (A) displays the accession numbers associated with the 
functional domains, whereas Panel (B) organizes and lists the names of these domains.
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were retained according to the Schrödinger Glide Grid module's 
criteria. In the third and final round of screening, which involved 
flexible docking, the compounds from the previous step were 
flexibly coupled, and the top 10 compounds with the highest 
coupling scores were identified as the final hits of this study. The 
virtual screening process and its results are illustrated in Figure 5.

In molecular coupling, the efficiency of a ligand is measured by 
its binding affinity to the target receptor protein, with the most 
efficient ligand having the lowest binding energy. To locate the 
active binding sites for target protein optimization, we used 
the online POCASA software. Based on the volume, 161 of the 
five active pockets were selected as the binding site (Figure 4F). 
Compounds from the TCM libraries were screened against the 
CsgD receptor, a DNA-binding transcriptional regulator, using 
the ligand-mounding tool and binding pocket parameters. The 
top ten compounds were selected based on their docking scores 
(Table 2).

These 10 selected compounds were manually visualized to verify 
their complex protein-compound interactions. The interactions 
of the docked hit compounds with CsgD were visualized using 
Discovery Studio 3.5 (Figure 6). The top 10 compounds in 
molecular coupling (Table 3) include hydrogen bonds between 
amino acids such as naringin-4-glucoside from the Chinese herb 
Wumei and GLU99, SER91, ALA92, ARG216, GLU159, ARG111, 
and GLN93 from the CsgD protein. Ingredients such as mydriatin, 
epiafzelechin, and ephedrine from the traditional Chinese 
medicine ephedra form hydrogen bonds with amino acids such 
as LYS94, GLU96, SER155, ASN70, LYS94, and SER155 in CsgD, 
respectively. Furthermore, mydriatin had a salt-bridging effect 
with GLU96 amino acids in CsgD. The astragalin, rengyoside 
C, and forsythide methyl ester components obtained from the 
Chinese herb Forsythia suspensa have intermolecular hydrogen 
bonds with amino acids such as GLU159, ASN70, GLU96, SER91, 
ALA92, SER65, GLN93, GLU99, SER155, LEU157, and LYS67, 
respectively. Furthermore, there is a salt bridge effect between 
astragalin and GLU96, and other compounds derived from the 

Figure 4:  Presents the following: (A) The modeled structure of CsgD generated by AlphaFold2. (B) 
The anticipated alignment error of the model, where dark green signifies low error and light green 
denotes high error. (C) Validation of the model's structure through the Ramachandran plot using 
PROCHECK, revealing that 86.1% of the residues lie within the preferred region. (D) The VERIFY3D 
analysis confirms the protein's structure. (E) The ERRAT graph indicates an overall quality score of 
88.835% for the model. (F) The active site, depicted as a white region, represents the binding site of 

the protein as predicted by POCASA.
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Figure 5:  Virtual screening workflow and results.

Name Structure Rotatable bonds Docking score h-bond Glide energy

Naringin 4'-glucoside 20 -7.368 0 -73.131

Mydriatin 3 -7.234 -0.656 -28.976

Astragalin 11 -7.19 -0.48 -59.644

Pinoresinol 
4-O-glucoside

15 -7.005 -0.555 -61.673

Lopac-I-3766 6 -6.86 -0.712 -36.072

Rengyoside C 15 -6.857 -0.578 -53.372

Epiafzelechin 5 -6.838 -0.87 -36.686

Forsythidmethylester 10 -6.754 -0.178 -47.381

Ephedrine 4 -6.609 0.656 -30.392

Alpha-glucose 6 -6.565 0 -30.649

Table 2:  Top 10 docking studies for shortlisted TCM compounds.
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Ligands Name Herb name H-Bonds Salt Bridges Pi-Pi
Naringin 4'-glucoside wumei GLU99 SER91 ALA92 ARG216 

GLU159 ARG111 GLN93
-- --

Mydriatin mahuang LYS94 GLU96 SER155 GLU96 --
Astragalin lainqiao GLU159 ASN70 GLU99 GLU96 

SER91 ALA92
-- TYR95

Pinoresinol 4-O-glucoside banlangen ASN70 GLU99 ARG216 SER155 
LYS67

-- --

Lopac-I-3766 jixueteng GLU159 GLN93 ALA92 ASN70 -- --
Rengyoside C lianqiao SER65 ASN70 GLU96 SER91 

GLN93
-- --

Epiafzelechin mahuang ASN70 -- --
Forsythidmethylester lianqiao GLU99 SER155 LEU157 LYS67 

GLN93
-- --

Ephedrine mahuang LYS94 GLU96 SER155 -- --
Alpha-glucose banlangen GLU99 SER91 GLN93 -- --

Table 3:  The top 10 interactions and their interacting residues.

Figure 6:  2D and 3D images of the coupling between CsgD and the top 10 compounds.
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SI.
No

Compounds Water 
solubility

Caco-2 
permeability

HIA Skin 
permeability

BBB Lipinski

0 Carbapenems -0.346 1.12 87.418 -2.735 -0.312 Yes
1 Naringin 4'-glucoside -2.814 -0.673 0 -2.735 -2.18 NO
2 Mydriatin -1.213 1.167 88.229 -2.712 -0.245 Yes
3 Astragalin -2.863 0.306 48.052 -2.735 -1.514 NO
4 Pinoresinol 

4-O-glucoside
-3.374 0.653 71.027 -2.735 -1.7 Yes

5 Lopac-I-3766 -3.06 0.955 91.096 -2.735 -2.752 Yes
6 Rengyoside C -3.111 0.372 41.448 -2.737 -1.357 Yes
7 Epiafzelechin -3.254 1.077 91.482 -2.735 -0.818 Yes
8 Forsythidmethylester -2.501 -0.531 11.514 -2.735 -1.506 Yes
9 Ephedrine -1.389 1.559 91.464 -2.698 -0.307 Yes
10 Alpha-glucose -1.377 -0.249 21.51 -3.041 -0.943 Yes

Table 4:  ADME profiling of shortlisted TCM compounds.

SI.

No

Compounds MES 
toxicity

Max. 
tolerated 
dose(log 
mg/kg/
day/)

Oral rat 
acute 
toxicity

(LD50)

Oral rat 

chronic

toxicity

(LOAEL)

Hepatoxicity Skin 
sensitisation

T. 
pyriformis 
toxicity 
(ug/L)

Minnow

toxicity 
(mM)

Spider web for 
ADME

1 Naringin 
4'-glucoside

NO 0.035 2.434 5.833 NO NO 0.285 9.019

2 Carbapenems NO 1.633 1.53 2.432 Yes NO 0.272 3.236

3 Mydriatin NO -0.318 2.896 1.38 NO Yes 0.285 2.026

4 Astragalin NO 0.582 2.546 4.53 NO NO 0.285 6.735

5 Pinoresinol 
4-O-glucoside

NO -0.478 3.488 5.432 NO NO 0.285 2.496 --

6 Lopac-I-3766 NO 0.118 2.427 .049 NO NO 0.285 2.081

7 Rengyoside C NO 0.252 3.733 3.677 Yes NO 0.285 4.926 --
8 Epiafzelechin NO 0.136 2.365 2.215 NO NO 0.519 2.75

9 Forsythid-
methylester

NO 0.999 2.36 3.882 NO NO 0.285 5.768

10 Ephedrine NO -0.359 2.942 1.369 Yes Yes -0.023 1.887

11 Alpha-glucose NO 1.896 1.214 3.897 NO NO 0.285 5.083

Table 5:  Toxicity analysis of the potent compounds identified in TCM.
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two Chinese herbs, Caulis spatholobi and Radix Isatidis, also 
have many hydrogen bonds.

ADMET profiling

This phase plays a crucial role in the initial assessment of drug 
safety during the drug discovery process, aiming to minimize 
drug toxicity and side effects. Using carbapenems, the last class 
of antibiotics, as a benchmark, the study found that none of 
the 10 selected natural products exhibited inhibitory effects on 
CYP1A2, CYP2C19, CYP2C9, CYP2D6, or CYP3A4 enzymes. 
These compounds also demonstrated low permeability across 
the blood-brain barrier but significant permeability through 
the skin. Evaluation using the Caco2 model showed inhibition 
of P-glycoprotein. Additionally, these compounds adhered to 
Lipinski's five rules, suggesting favorable lead- and drug-like 
properties, as summarized in Table 4. Potential toxic effects of 
these drugs include toxicity, neurotoxicity, immunotoxicity, 
mutagenicity, and carcinogenicity. To guarantee safety, the 
toxicity of the selected molecules was evaluated using the pkSCM 
online server. The results indicated that, except for rengyoside C 
and ephedrine, which showed mutagenicity and hepatotoxicity 
in the AMES test, no other compounds exhibited these effects. 

Skin sensitization tests were negative for all compounds except 
mydriatin and ephedrine, as detailed in Table 5.

Mydriatin, Lopac-I-3766, and Epiafzelechin were the three 
compounds that best met the ADMET and toxicity analysis 
criteria. Mydriatin shows strong ADMET performance with 
good water solubility, high Caco2 permeability, good HIA, BBB 
penetration, and Lipinski rule compliance. It also has low toxicity, 
with no AMES toxicity, relatively low acute oral toxicity, and no 
skin sensitization. Lopac-I-3766 performed well in ADMET tests, 
showing good water solubility, Caco2 permeability, HIA, BBB 
penetration, and Lipinski rule compliance. It also has low toxicity, 
with no AMES toxicity, moderate acute oral acute toxicity, and 
no hepatotoxicity. Epiafzelechin exhibits favorable ADMET 
properties with good water solubility, CaCo2 permeability, HIA, 
BBB penetration, and Lipinski rule compliance. It also has low 
toxicity, with no AMES toxicity, moderate acute oral toxicity, and 
no skin sensitization. These three compounds appear to be the 
best candidates based on the balance of ADMET profiles.

Molecular dynamics simulation studies
To verify the stability of ligand binding to the protein, we 
calculated the Root Mean Square Deviation (RMSD) of the 

Figure 7:  (1) Displays the RMSD graphs of the protein and ligands throughout a 100 ns dynamic simulation. (2) Number of hydrogen bonds formed between 
ligands and the CsgD during dynamic simulation of 100 ns A, B: Mydriatin; C, D: Lopac-I-3766; E, F: Epiafzelechin.
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protein backbone and the small ligand molecule conformation 
based on the superposition of the protein backbone in 100 ns 
trajectories of the three ligand-protein complexes (Figure 7 (1)). 
The RMSD of the isoprotein backbone of the Lopac-I-3766 ligand 
and epiafzelechin in the system was stable below 2 after 50 ns, 
the simulation trajectory reached equilibrium, and the protein 
and ligand binding was stable. It is important to note that small 
molecules such as mydriatin exhibit large fluctuations in RMSD 
in the ligand conformation.

Hydrogen bonds play an important role in biological 
macromolecules and are one of the main driving forces of 
protein-ligand interactions. They play an indispensable role in 
the stabilization of protein-ligand complexes.40 The number 
of hydrogen bonds between the ligand and the protein was 
relatively stable after 25 ns, and the number of Lopac-I-3766 
and epiafzelechin ligands was greater than that of mydriatin. 
The more hydrogen bonds there are, the more stable the bond 
between the ligand and the protein. As the protein-ligand binding 
in Figure 7 (2) shows, the structural fragments that play a key role 
are concentrated at one end of the ligand, while the other end is 
exposed outside the binding pocket. When the molecular weight 
of the ligand is large and the molecular skeleton is long, there are 
more parts outside the binding region, and this part moves more 
freely, which may be the reason for the relatively large RMSD 
fluctuations of some small molecules.

To investigate the dynamic behavior of the target protein when 
interacting with three ligands, we calculated the Root-Mean-
Square Fluctuations (RMSFs). This analysis offers insights into 

the flexibility of individual residues within a protein. The detailed 
findings are illustrated in Figure 8. An RMSF analysis of the protein 
CsgD with 217 inhibitors showed that the three protein-inhibitor 
complexes exhibited similar patterns in the numerical distribution 
of RMSFs. Specifically, the residues at the binding site underwent 
significant fluctuations within the range of 150-185. Compared 
to mydriatin, epiafzelechin and Lopac-I-3766 induced greater 
variations in the binding site residues. The overall fluctuations 
indicated that the protein-ligand complex was stable. Generally, 
during the 100-ns dynamic simulation, the transcriptional 
regulator protein CsgD was found to be stable when combined 
with these three compounds.

Figure 8:  Fluctuations in protein residues during 100 ns dynamic simulations determined by RMSF values.

Figure 9:  The antibacterial activity of compounds against K. pneumoniae.
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Utilizing the PASS tool to predict the biological 
activity of the three compounds

The identified hit compounds were searched for structural 
similarity, and their biological activities were estimated using 
the Prediction of Activity Spectrum of Substances (PASS) tool. 
The results of biological activity prediction of the selected 
compounds based on the ligand structural fragments are shown 
in the Supplementary Data Files Figure S1, where Pa is the 
probability of having the corresponding biological activity and 
Pi is the probability of non-biological activity. From the above 
results, it can be seen that the probabilities of being Active (Pa) 
were compared with the structures to determine the most active 
molecules for the predicted biological activity. The highest 
biological activity was predicted to be the membrane integrity 
agonist activity of the three compounds, with likelihood >0.8.

Antibacterial in vitro activity test
Evaluation of antibacterial activity

After conducting molecular docking and molecular dynamics 
analyses, mydriatin, epiafzelechin, and lopac-I-3766 were chosen 
for further evaluation of their antibacterial activity. The broth 
microdilution method was employed to test their activity against 
K. pneumoniae (ATCC 700603), following the guidelines set 
by the Clinical and Laboratory Standards Institute (CLSI). The 
results, presented in Figure 9, indicated that at a concentration 
of 200 μg/mL, there was a notable difference in the inhibitory 
activity of K. pneumoniae among the three compounds. Mydriatin 
exhibited the most promising effect, with an inhibition rate of 
approximately 25%, while the other two compounds showed 
inhibition rates of around 10%.

(The concentration of each compound treatment is 200 μg/mL 
and the error bars represent the mean±SD; the treatment group 
was subjected to one-way ANOVA with the corresponding 
control group, ** p<0.01, * p<0.05.)

Minimum Inhibitory Concentration (MIC) for 3 
compounds

The three compounds, mydriatin, epiafzelechin, and 
lopac-I-3766, were detected by the broth microdilution method 
against 30 clinically isolated multidrug-resistant K. pneumoniae 
strains. The Minimum Inhibitory Concentrations (MIC) of 

the K. pneumoniae strains were determined, and the results 
showed that mydriatin, epiafzelechin, and lopac-I-3766 had 
significant antibacterial effects on the K. pneumoniae strains 
(Table 6). Mydriatin showed the best antibacterial effect, with 
an MIC of 125-500 μg/mL, and 80% of the strains had an MIC 
of 125-250 μg/mL. Although more in vitro experiments need to 
be carried out to confirm the inhibitory effects of mydriatin on 
K. pneumoniae, the antimicrobial activities of the compounds 
are consistent with virtual screening and molecular modelling, 
which also indicates that mydriatin is a promising compound. 
The antibacterial activities of the other two compounds were 
similar, with MICs of 250～1000 μg/mL. In the positive control 
group, the solution was clarified, which indicated that the growth 
was sterile and tigecycline was qualified. In the negative control 
group, the growth of K. pneumoniae was good, indicating that the 
bacterial solution was qualified, and the solution in the medium 
control group was clarified, which indicated that the presence of 
K. pneumoniae made the solution turbid, and the inoculation of 
K. pneumoniae in the diluted medium containing DMSO showed 
good growth, indicating that DMSO did not inhibit the growth of 
K. pneumoniae.

DISCUSSION

There is currently a growing interest in the application of 
computational methods and approaches for the discovery and 
development of effective drug targets.41 However, high-throughput 
experimental sequencing data for most infectious bacteria are still 
unavailable. Consequently, the elucidation and identification of 
key drug targets are mainly based on bioinformatic predictions. 
Given the increasing prevalence of drug resistance in pathogens, 
in silico subtractive genomic analysis has emerged as a widely 
used strategy for precisely identifying strain-specific drug 
targets.42,43 Contemporary studies have adopted subtractive 
proteomics to reveal and predict novel drug candidates. The 
scope of this research focused on one of the most important 
clinical pathogens, K. pneumoniae. Widely recognized for its 
effectiveness, this strategy has been crucial in the search for new 
drug targets against various dangerous pathogens.

To decipher the core proteome and uncover novel, potent 
therapeutic targets, a subtractive genome analysis was conducted 
on the core genome. This study identified approximately 1041 
proteins that do not share homology with the human proteome, 

Compounds Strains 
No.

Concentration (μg/mL) MIC range

62.500 125.000 250.000 500.000 1000.000
Mydriatin 30 0 12 12 6 0 125～500

Epiafzelechin 30 0 0 12 12 6 250～1000

Lopac-I-3766 30 0 0 4 18 8 250～1000

Table 6:  MIC determination results of the 3 compounds (μg/mL).
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among which 895 were deemed essential for the survival of 
the pathogen. Among these, the transcriptional regulator 
CsgD emerged as a promising therapeutic target. As a pivotal 
transcriptional regulator involved in biofilm formation, CsgD 
plays a vital role in the survival and proliferation of bacteria.44-46 
Previous studies have recognized CsgD as a potential drug target 
for various pathogens, such as Escherichia coli and Salmonella.47 
Furthermore, CsgD plays a crucial role in stress resistance and 
represents a potential target for treating and controlling biofilm 
formation.48 Therefore, interventions targeting CsgD may provide 
important targets for the development of novel antibacterial 
therapies, particularly with potential application value in 
controlling drug-resistant bacterial biofilms.The protein structure 
of CsgD was modeled using AlphaFold2 and subsequently 
validated using PROCHECK, ERRAT, and VERIFY3D tools.

Previous studies have recognized CsgD as a potential drug target 
for various pathogens, such as Escherichia coli and Salmonella.47 
Furthermore, CsgD plays a crucial role in stress resistance and 
represents a potential target for treating and controlling biofilm 
formation.48 The protein structure of CsgD was modeled using 
AlphaFold2 and subsequently validated using PROCHECK, 
ERRAT, and VERIFY3D tools.

In recent years, research on the antibacterial effects of TCM has 
increased gradually. As early as the 1980s, studies found that TCM 
could eliminate bacterial resistance to antibiotics. Currently, heat 
purification and detoxification medicines are the most effective 
TCMs for eliminating bacterial resistance, mainly honeysuckle, 
Scutellaria baicalensis, isatis root, Forsythia suspensa, 
bupleurum, shegan, dandelion, and Houttuynia cordata.42,43 
Given the vast number of Traditional Chinese Medicines 
(TCMs) and the intricacy of their constituents, pinpointing those 
with antibacterial properties through conventional methods 
is extremely challenging. High-throughput screening offers a 
substantial enhancement in the efficiency of active compound 
identification.49 Additionally, virtual screening can quickly 
narrow the selection of target molecules from a large number of 
component libraries.The main components extracted from the 
Chinese herbs, as reported in TCMSP,50 were then subjected to 
virtual screening. First, we followed the Lipinski Ro5 and Verber 
Ro3 Principles to filter out TCM compounds that violate the 
principle of drug likeness. Glide software was used to perform 
molecular docking calculations with three different accuracies, 
namely high-throughput HTVS, standard precision SP, and 
ultra-precision XP, gradually reducing the size of the candidate 
compound library. The top 10 compounds characterized by 
docking scores ranging from -6.6 to -7.4 were identified as 
promising candidates.

In the initial phases of drug discovery, computational profiling 
of Absorption, Distribution, Metabolism, Excretion, and Toxicity 
(ADMET) is pivotal for monitoring the hit-to-lead discovery 
process and subsequent lead optimization. Schrodinger's 

QikDrop program was utilized to predict the ADMET properties 
of the hit molecule. A comprehensive drug-like evaluation was 
conducted by incorporating predictions based on both Lipinski's 
Rule of Five (Ro5) and Verber's Rule of Three (Ro3). The ADMET 
profile of these compounds assessed their ADME properties, 
non-toxicity, and drug-likeness, ensuring their safe use in both 
in vitro and in vivo studies. Among the evaluated compounds, 
mydriatin, Lopac-I-3766, and epiafzelechin emerged as the top 
three that met the ADMET and toxicity analysis standards. 
While 100-nanosecond molecular dynamics simulations of 
these protein-ligand complexes revealed their stability after 
approximately 25 nanoseconds, complementing our docking 
analysis and yielding acceptable ADMET parameters, it's 
important to note that the predicted results may still contain 
errors due to potential differences in compound behavior in 
natural environments. Therefore, laboratory validation and in 
vivo expression of these compounds against K. pneumoniae, as 
well as studies on their effects on human immune responses, are 
necessary to complement and validate the computational analysis. 
However, the application of advanced virtual screening technology 
and Molecular Dynamics (MD) simulations to demonstrate the 
effect of Traditional Chinese Medicine (TCM) monomers on K. 
pneumoniae has enhanced drug screening efficiency, reduced 
experimental costs, accelerated the modernization of TCM, and 
promoted its internationalization.

Mydriatin and Epiafzelechin are ephedrine and flavanol 
compounds of the Chinese medicinal herb Mahuang. 
Mahuang has antipyretic, antibacterial, and antiviral effects, 
while epiafzelechin has antioxidant and antibacterial effects.51 
Lopac-I-3766 is a bioactive component of the Chinese medicinal 
herb, Jixueteng. Jixueteng has anti-inflammatory, disinfectant, 
and antitumor effects, which were further tested for MIC using 
a broth microdilution test. The results showed that Mydriatin, 
Epiafzelechin and Lopac-I-3766 had significant antibacterial 
effects against clinical isolates of K. pneumoniae with MIC 
values ranging from 250 to 1000 μg/mL. Mydriatin had the best 
antibacterial effect, with an MIC of 125-500 μg/mL, against 
clinical isolates of K. pneumoniae. In vitro descriptors also 
supported the virtual screening approach. Therefore, Mydriatin 
can be used as a potential drug candidate against the pathogenic 
bacterium K. pneumoniae.

At present, the specific mechanism of the direct antibacterial effect 
of TCM is not clear, and current research results fall mainly into 
four categories:52,53 changing the permeability of cell membranes; 
inhibiting the activity of enzymes in bacteria, thereby interfering 
with their metabolism; inhibiting the synthesis of proteins and 
nucleic acids; oxidising the active functional groups in bacteria.
The confirmed structure of the 3 compounds was subjected to the 
computer program PASS for biological activity. The Probabilities 
of being active (Pa) were compared with those of the structures 
to determine the most active molecules for predicted biological 
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activity. The highest biological activity was predicted to be the 
membrane integrity agonist activity of the three compounds. In 
fact, it has been proposed that the antibacterial effects of some 
TCMs could be explained mainly by their ability to cause direct 
damage to the bacterial membrane54 or at least as a consequence of 
destabilizing it to allow them access to their intracellular targets.55 
Further research is needed to elucidate the specific antibacterial 
mechanisms of these TCMs.

CONCLUSION

Given the increasing resistance of K. pneumoniae to existing 
antibiotics, the search for novel drug candidates is ongoing. In 
the present study, a novel anti-K. pneumoniae drug target CsgD 
was predicted using pan-genomics and subtractive proteomics.
The molecular docking technique was used to virtually screen 
and a series of TCM compounds against the CsgD. Three highly 
potent drug candidates were identified as the most promising 
lead. In silico ADMET analysis of the selected ligands showed 
positive pharmacokinetic and toxicity profiles. MD simulations 
of the most stable complexes showed that ligand compound 1 
(mydriatin) bound well to the target protein CsgD in a dynamic 
manner. Subsequently, in vitro antibacterial experiments 
showed that mydriatin significantly inhibited K. pneumoniae. 
Therefore, mydriatin can be used as a potential drug candidate 
against the pathogenic bacteria K. pneumoniae. Our findings 
represent a valuable asset in the discovery and rational design of 
novel antibiotics to combat the challenges posed by multidrug 
resistance in K. pneumoniae.
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SUMMARY

Klebsiella pneumoniae, a prevalent opportunistic pathogen, 
threatens hospitalized patients with various infections and 
growing antibiotic resistance. Through pan-genomic analysis, 

we identified CsgD as a drug target and virtually screened 29,384 
natural compounds from Traditional Chinese Medicine libraries. 
Among them, mydriatin emerged as a potent CsgD inhibitor, 
demonstrating significant inhibitory effects on antibiotic-resistant 
K. pneumoniae strains in vitro. This study suggests mydriatin as 
a promising therapeutic agent and underscores the importance 
of natural product libraries and computational methods in 
antibiotic discovery against multidrug-resistant K. pneumoniae.
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Table S1: The amino acid sequence of the transcriptional regulator CsgD (KPHS_44520) was compared with the CARD 
database and the annotation of the drug resistance gene (CARD) was analyzed. The results of the CARD analysis are 

displayed in the supplementary data files.
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Figure S1: Experimental prediction of biological activity of the 3 compounds based on the PASS tool. 
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