Home | Articles
Published on:November 2019
Indian Journal of Pharmaceutical Education and Research, 2019; 53(4s):s630-s641
Original Article | doi:10.5530/ijper.53.4s.159

Stress Degradation Studies of Riociguat, Development of Validated Stability Indicating Method, Identification, Isolation and Characterization of Degradation Products by LC-HR-MS/MS and NMR Studies


Authors and affiliation (s):

Charu P Pandya, Sadhana J Rajput*

Department of Pharmaceutical Quality Assurance, Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Center of Relevance and Excellence in New Drug Delivery System, Government of India, Vadodara, Gujarat, INDIA.

Abstract:

Aim: The present study reports the degradation behavior of new antihypertensive drug Riociguat under various stress conditions as per International Conference on Harmonization guidelines ICH, Q2(R1). Materials and Methods: Riociguat was subjected to stress degradation under hydrolytic (acidic, alkaline and neutral), oxidative, photolytic and thermal stress conditions to investigate the inherent stability. A rapid, accurate, precise and robust HPLC method was developed on Waters Symmetry C18 Column (150mm X 4.6 mm, 5μ) using isocratic elution of 10 mm ammonium acetate buffer pH 5.7 and acetonitrile in the ratio of 70:30 with the flow rate at 1.0 mL/min.The detection was performed at 254nm. Results: The drug was found to be degraded in alkaline and oxidative condition whereas it was stable under acidic, neutral hydrolytic, thermal and photolytic conditions. Two degradation products (DP1, DP2) under alkaline condition and one under oxidative condition (DP3) were characterized by LC-HR-MS/MS with accurate mass measurements. Degradation products (DP1, DP2 and DP3) were isolated by preparative HPLC and were characterized by 1H NMR, 13C NMR, APT and IR Techniques. Conclusion: Using spectral data analysis, alkaline degradation product DP1 wascharacterized as 2-(1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl)-N5-methylpyrimidine-4,5,6-triamine and DP2 was characterized as 2-(1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl)- 6-amino-7-methyl-7H-purin-8(9H)-one while oxidative degradation product DP3was characterized as methyl 2-(1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl)-4,6- diaminopyrimidin-5-ylmethylcarbamate-N-oxide.The developed chromatographic method was validated in terms of specificity, linearity, accuracy, precision as per ICH guidelines. The robustness of the method was studied with 2-level fractional factorial design 2^4-1.

Key words: Riociguat, Stress degradation, RP-HPLC, LC-HR-MS/MS, Preparative HPLC, NMR.

 

Articles in PDF, ePUB and Full text are attached to this page. In order to download, print or access these formats you must be logged in.
CAPTCHA
This question is for testing whether you are a human visitor and to prevent automated spam submissions.
2 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.




 

Impact Factor

IJPER - An Official Publication of Association of Pharmaceutical Teachers of India is pleased to announce continued growth in the 2019 Release of Journal Citation Reports (source: 2018 Web of Science Data).

 

Impact Factor® as reported in the 2018 Journal Citation Reports® (Clarivate Analytics, 2019): 0.425

User login

CAPTCHA
This question is for testing whether you are a human visitor and to prevent automated spam submissions.
8 + 6 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.

The Official Journal of Association of Pharmaceutical Teachers of India (APTI)
(Registered under Registration of Societies Act XXI of 1860 No. 122 of 1966-1967, Lucknow)

Indian Journal of Pharmaceutical Education and Research (IJPER) [ISSN-0019-5464] is the official journal of Association of Pharmaceutical Teachers of India (APTI) and is being published since 1967.

DOI HISTORY

IJPER uses reference linking service using Digital Object Identifiers (DOI) by Crossref. Articles from the year 2013 are being assigned DOIs for its permanent URLs